首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study attempts to compare the signal-to-noise ratio (SNR) of the 40 mm High-Temperature Superconducting (HTS) surface resonator at 77 K and the 35 mm commercial quadrature (QD) surface resonator at 300 K in a 3 Tesla (T) MRI imager. To aquire images for the comparison, we implemented a phantom experiment using the 40 mm diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) HTS surface resonator, the 35 mm commercial QD surface resonator and the 40 mm professionally-made copper surface resonator. The HTS surface resonator at 77 K provided a 1.43-fold SNR gain over the QD surface resonator at 300 K and provided a 3.84-fold SNR gain over the professionally-made copper surface resonator at 300 K on phantom images. The results agree with the predictions, and the difference between the predicted SNR gains and measured SNR gains is 1%. Although the geometry of the HTS surface resonator is different from the QD surface resonator, its SNR is still higher. The results demonstrate that a higher image quality can be obtained with the HTS surface resonator at 77 K. With the HTS surface resonator, the SNR can be improved, suggesting that the HTS surface resonator is a potentially helpful diagnostic tool for MRI imaging in various applications.  相似文献   

2.
IT Lin  HC Yang  JH Chen 《PloS one》2012,7(8):e42509
This study examines the enlargement of the field of view (FOV) and the maintenance of a high signal-to-noise ratio (SNR) through the use of two high-temperature superconducting (HTS) resonators in a 3T MRI. Two Bi(2)Sr(2)Ca(2)Cu(3)O(x) (Bi-2223) surface resonators, each of 4-cm diameter, were used in a 3T MRI. Professionally made copper resonators operate at 300 K, but each Bi-2223 resonator, operated at 77 K and demonstrated a 3.75 fold increase in SNR gain. For the same scanning time, the SNR of the images of a rat's brain and back, obtained using two small Bi-2223 surface resonators, was higher than that obtained using a single 8-cm surface resonator.  相似文献   

3.
To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat''s temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonator at 77 K was demonstrated in a 3-Tesla MRI system. The proton resonant frequency (PRF) method was employed to monitor the rat''s temperature. Moreover, the capacity of MR thermometry in the HTS experiments was evaluated by correlating with data from independent fiber-optic sensor temperature measurements. The PRF thermal coefficient was derived as 0.03 rad/°C and the temperature-monitoring architecture can be implemented to upgrade the quality and safety in HTS experiments. The signal-to-noise ratio (SNR) of the HTS surface resonator at 77 K was higher than that of a professionally made copper surface resonator at 300 K, which has the same geometry, by a 3.79-fold SNR gain. Furthermore, the temperature-stable HTS cryo-system we developed can obtain stable SNR gain in every scan. A temperature-stable HTS cryo-system with an external air-blowing circulation system is demonstrated.  相似文献   

4.
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.  相似文献   

5.
Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR) constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR) in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality - by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae - and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.  相似文献   

6.
Thickness-shear mode (TSM) resonators have been used to characterize static rheological properties of plasma and whole blood samples. We demonstrated simple and rapid techniques for determining plasma viscosity without cell separation, for measuring erythrocyte sedimentation rate, and for tracking blood coagulation throughout the entire process. Additionally, mathematical models, previously developed to characterize surface-loaded resonators, were used to extract non-Newtonian and viscoelastic material properties of blood layers during sedimentation and coagulation experiments. These studies indicate the utility of the TSM resonator for several clinical applications. Because the resonators can be miniaturized, potential exists for extending the techniques for use inside the body or blood stream (in vivo).  相似文献   

7.
8.
Darrasse L  Ginefri JC 《Biochimie》2003,85(9):915-937
Since discovery of high-temperature superconductive (HTS) ceramics by Bednorz and Muller in 1986, there has been an accelerated development of cold technologies in industry, including the domain of NMR detection. The purpose of this paper is to fix ideas about the stage that cryogenic radio frequency (RF) probe techniques have reached in biomedical magnetic resonance imaging (MRI). Readers confronted to the literature about this emerging topic have to understand a large range of motivations with somewhat unclearly defined technical limitations and actual outlets. An overview of sensitivity issues in the general context of biomedical MRI is provided here and the contribution of RF coil techniques to recent advances is identified. The domains where cooled coil materials such as copper, low- or high-temperature superconductors, could actually increase the RF coil sensitivity are delimited by a quantitative analysis of noise mechanisms. Technical keys, cryogenic means and cold RF coil technologies are considered, and first achievements in different fields of biomedical MRI are reviewed. This survey provides a basis for discussing about the future impact of cryogenic probes for MRI investigations.  相似文献   

9.
Exposure to radiofrequency (RF) power deposition during magnetic resonance imaging (MRI) induces elevated body‐tissue temperatures and may cause changes in heart and breathing rates, disturbing thermoregulation. Eleven temperature sensors were placed in muscle tissue and one sensor in the rectum (measured in 10 cm depth) of 20 free‐breathing anesthetized pigs to verify temperature curves during RF exposure. Tissue temperatures and heart and breathing rates were measured before, during, and after RF exposure. Pigs were placed into a 60‐cm diameter whole‐body resonator of a 3 T MRI system. Nineteen anesthetized pigs were divided into four RF exposure groups: sham (0 W/kg), low‐exposure (2.7 W/kg, mean exposure time 56 min), moderate‐exposure (4.8 W/kg, mean exposure time 31 min), and high‐exposure (4.4 W/kg, mean exposure time 61 min). One pig was exposed to a whole‐body specific absorption rate (wbSAR) of 11.4 W/kg (extreme‐exposure). Hotspot temperatures, measured by sensor 2, increased by mean 5.0 ± 0.9°C, min 3.9; max 6.3 (low), 7.0 ± 2.3°C, min 4.6; max 9.9 (moderate), and 9.2 ± 4.4°C, min 6.1, max 17.9 (high) compared with 0.3 ± 0.3°C in the sham‐exposure group (min 0.1, max 0.6). Four time‐temperature curves were identified: sinusoidal, parabolic, plateau, and linear. These curve shapes did not correlate with RF intensity, rectal temperature, breathing rate, or heart rate. In all pigs, rectal temperatures increased (2.1 ± 0.9°C) during and even after RF exposure, while hotspot temperatures decreased after exposure. When rectal temperature increased by 1°C, hotspot temperature increased up to 42.8°C within 37 min (low‐exposure) or up to 43.8°C within 24 min (high‐exposure). Global wbSAR did not correlate with maximum hotspot. Bioelectromagnetics. 2021;42:37–50. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society  相似文献   

10.

Background

Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to.

Methods

First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants.

Results

The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor.

Conclusion

The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for.  相似文献   

11.

Background

This article explains some simple experiments that can be used in undergraduate or graduate physics or biomedical engineering laboratory classes to learn how birdcage volume radiofrequency (RF) coils and magnetic resonance imaging (MRI) work. For a clear picture, and to do any quantitative MRI analysis, acquiring images with a high signal-to-noise ratio (SNR) is required. With a given MRI system at a given field strength, the only means to change the SNR using hardware is to change the RF coil used to collect the image. RF coils can be designed in many different ways including birdcage volume RF coil designs. The choice of RF coil to give the best SNR for any MRI study is based on the sample being imaged.

Results

The data collected in the simple experiments show that the SNR varies as inverse diameter for the birdcage volume RF coils used in these experiments. The experiments were easily performed by a high school student, an undergraduate student, and a graduate student, in less than 3 h, the time typically allotted for a university laboratory course.

Conclusions

The article describes experiments that students in undergraduate or graduate laboratories can perform to observe how birdcage volume RF coils influence MRI measurements. It is designed for students interested in pursuing careers in the imaging field.
  相似文献   

12.
The purpose of the present study was to fabricate a volume coil for proton/deuterium magnetic resonance imaging (MRI) in rodents at 9.4 T. Two birdcage radiofrequency (RF) coils have been designed for proton/deuterium MRI: the rungs of two concentric birdcages were azimuthally interleaved with each other for better decoupling, and the two coils were tuned to 400.3 and 61.4 MHz for 1H/2H resonance at 9.4 T. Compared to a commercially available coil, the proposed 1H/2H RF coil provides reasonable transmission efficiency and imaging signal-to-noise ratio (SNR); the relationships among imaging parameters such as SNR, voxel size, and deuterium oxide concentrations have been quantitatively studied, and the linear correlation results together with the spectroscopic data in vivo indicate its feasibility in deuterium metabolic imaging (DMI) in vivo. Our study indicates that using the birdcage design for MRI signal excitation combined with surface coil array for signal reception can facilitate DMI investigations more effectively towards future pre-clinical and clinical applications. As a noninvasive method by measuring nonhydrogen nuclear deuterium signals to reflect metabolite information, DMI will feature prominently in future precision medicine through the whole process of diagnosis, treatment, and prognosis. © 2021 Bioelectromagnetics Society.  相似文献   

13.
A laser Doppler vibrometer was used to measure the acoustic responses of different body surfaces of several species of salamanders and lizards. The lateral body wall over the lung displayed sound-induced motion up to 30 dB greater than the lateral head surface from 300-1,000 Hz in salamanders and from 200-2,500 Hz in lizards. The lateral body wall of lungless plethodontid salamanders showed no such enhanced motion to sound. The lateral body wall of lizards was more responsive than their tympanum to sound frequencies below about 1,250-2,000 Hz. The frequency of the peak response of lizard body walls matched the resonant frequency of a Helmholtz resonator with the volume and dimensions of their lungs. In contrast, the frequency of peak response of salamander body walls was well below the resonant frequencies calculated for both Helmholtz resonators and closed tubes with the dimensions and volumes of their lungs. Nonetheless, filling the lungs with saline dramatically reduced the responsiveness of the lateral body walls of both the lunged salamanders and the lizards. As previously demonstrated in anuran amphibians, the lateral body wall and lungs of salamanders and lizards may function in sound reception, especially at relatively low frequencies.  相似文献   

14.
由于电子设备的广泛使用,人类已经越来越多地暴露在射频磁场的辐射下,但射频磁场的辐射效应却一直不明确.采用全细胞膜片钳技术,记录2 450 MHz射频磁场辐射对小鼠脑皮层神经元延迟整流钾电流IK的影响.利用Ansoft HFSS软件对6 dB全向天线建模仿真,验证距天线2~3 cm处磁场分布均匀,使用Agilent E5070B网络分析仪经该天线发射出2 450 MHz输出功率为39.81 mW电磁场,对细胞进行刺激.实验发现,2 450 MHz低功率射频磁场暴露5、10和15 min对IK均有明显的抑制作用;显著影响IK激活特性,对照组与磁场暴露组半数激活电压分别为(-1.13±2.32)mV和(19.52±1.03)mV(n=10, P <0.05);斜率因子分别为(23.21±3.29)mV和(13.95±1.27)mV(n=10, P <0.05).结果表明,低功率射频磁场通过减小延迟整流钾通道电流,影响神经元的生理功能,为进一步研究电磁辐射所引发的生物学效应提供了一种新的方法.  相似文献   

15.
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.  相似文献   

16.
Detecting small concentrations of molecules down to the single molecule limit has impact on areas such as early detection of disease, and fundamental studies on the behavior of molecules. Single molecule detection techniques commonly utilize labels such as fluorescent tags or quantum dots, however, labels are not always available, increase cost and complexity, and can perturb the events being studied. Optical resonators have emerged as a promising means to detect single molecules without the use of labels. Currently the smallest particle detected by a non-plasmonically-enhanced bare optical resonator system in solution is a 25 nm polystyrene sphere1. We have developed a technique known as Frequency Locking Optical Whispering Evanescent Resonator (FLOWER) that can surpass this limit and achieve label-free single molecule detection in aqueous solution2. As signal strength scales with particle volume, our work represents a > 100x improvement in the signal to noise ratio (SNR) over the current state of the art. Here the procedures behind FLOWER are presented in an effort to increase its usage in the field.  相似文献   

17.
Previously, saturation transfer (ST-EPR) studies of biomolecular dynamics have involved the use of a resonant cavity and the V'2 display (absorption, second harmonic, out of phase). In the present study, we replaced the resonant cavity with a loop-gap resonator and used the U'1 display (dispersion, first harmonic, out of phase) to study spin-labeled muscle fibers. The new resonator and display showed several advantages over those previously used. It produced virtually noiseless U'1 spectra on a 0.4 microliter sample using a 4 min scan; previous U'1 experiments on spin-labeled muscle, using a conventional rectangular cavity, resulted in an unacceptably low signal-to-noise ratio. The high filling factor of the resonator facilitated the study of these extremely small fiber bundles and permitted high microwave field intensities to be achieved at much lower incident microwave power levels, thus greatly enhancing the signal-to-noise ratio in U'1 experiments. This reduction in the noise level made it possible to benefit from the other advantages of U'1 over V'2, such as stronger signals, simpler line shapes, and simpler data analysis. For these muscle fiber samples, the resulting sensitivity (signal/noise/sample volume) of the U'1 signals was greater than 100 times that of V'2 signals obtained in a conventional cavity. Another advantage of the U'1 display is that signals from weakly immobilized probes, i.e., probes that have nanosecond rotational mobility relative to the labeled protein (myosin), are greatly suppressed relative to strongly immobilized probes. This reduces the ambiguity of spectral analysis, and eliminates the need for chemical treatments [e.g., using K3Fe(CN)6] that were previously required in muscle fibers and other systems. Further suppression of this weakly immobilized component was achieved in U'1 spectra by increasing the microwave power and decreasing the field modulation frequency.  相似文献   

18.
褐飞虱成虫体内磁性物质检测   总被引:2,自引:0,他引:2  
解春兰  李志毅  隋贺  潘卫东  陈法军 《昆虫学报》2011,54(10):1189-1193
地磁定向是昆虫远距离迁飞定向的重要机制之一.本研究以褐飞虱Nilaparvata lugens长翅型和短翅型成虫为研究对象,利用MPMS-7型号超导量子干涉磁强计(磁场范围为±4.8 mA/m,温度范围为1.9 ~ 400 K)检测虫体内的磁性物质,明确其体内的分布状况.结果表明:褐飞虱长翅型雄成虫整个虫体的温度退磁曲...  相似文献   

19.
The CIMPA Project (2007-2008), led under the ANR-TECSAN Call, was coordinated by SENSeOR, in partnership with the LEAT and the FEMTO. The aim of the project was to develop a surface acoustic wave sensor demonstrator, passive implantable to monitoring the blood pressure and the temperature. This sensor uses the surface acoustic wave technology (SAW) and is composed of three resonators using quartz as piezoelectric substrate. One resonator for temperature measurement (T), a second resonator for the blood pressure measurement (P) and a third resonator, which is used as reference (R). This sensor is compatible with size requirements inherent to an implantation in an artery, since the size of the resonator with its antennas in its most compact configuration is of the order of 5.2 mm × 3.7 mm × 0.85 mm. It requires no embarked sources of energy and being able to be interrogated by a radiofréquence (RF) connection thanks to a transceiver, which emits a signal in the band industrial, scientific and medical (ISM). The sensor (connected to an integrated antenna on quartz of very small dimension) requested by the signal of interrogation emits in its turn a signal, which carries information of pressure and temperature. The transceiver then collects apart from its transmitting phase the signal emitted by the sensor and extracts by an appropriate signal processing method information of pressure and temperature. The targeted range for pressure measurement extends from 1 bar to 1.35 bar with an accuracy of about 2% FS.  相似文献   

20.
The quartz crystal microbalance (QCM) has been widely accepted as a sensitive technique to follow adsorption processes in gas as well as in liquid environments. However, there are only a few reports about the use of this technique to monitor the attachment and spreading of mammalian cells onto a solid support in culture. Using a QCM-setup we investigated the time course of cell attachment and spreading as a function of seeding density for three widespread and frequently used cell lines (MDCK strains I and II and Swiss 3T3-fibroblasts). Results were found to be in good agreement with the geometrical properties of the individual cell types. The shifts of the resonance frequency associated with confluent cell layers on top of the quartz resonators were found to be dependent on the cell species [MDCK-I: (320±20) Hz; MDCK-II: (530±25) Hz; 3T3: (240±15) Hz] reflecting their individual influence on the shear oscillation of the resonator. These findings are discussed with respect to the basic models of materials in contact with an oscillating quartz resonator. We furthermore showed by inhibition-assays using soluble RGD-related peptides, that only specific, integrin mediated cell adhesion is detected using this QCM approach, whereas the sole presence of the cellular body in close vicinity to the resonator surface is barely detectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号