首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Many practical tasks in biomedicine require accessing specific types of information in scientific literature; e.g. information about the methods, results or conclusions of the study in question. Several approaches have been developed to identify such information in scientific journal articles. The best of these have yielded promising results and proved useful for biomedical text mining tasks. However, relying on fully supervised machine learning (ml) and a large body of annotated data, existing approaches are expensive to develop and port to different tasks. A potential solution to this problem is to employ weakly supervised learning instead. In this article, we investigate a weakly supervised approach to identifying information structure according to a scheme called Argumentative Zoning (az). We apply four weakly supervised classifiers to biomedical abstracts and evaluate their performance both directly and in a real-life scenario in the context of cancer risk assessment. RESULTS: Our best weakly supervised classifier (based on the combination of active learning and self-training) performs well on the task, outperforming our best supervised classifier: it yields a high accuracy of 81% when just 10% of the labeled data is used for training. When cancer risk assessors are presented with the resulting annotated abstracts, they find relevant information in them significantly faster than when presented with unannotated abstracts. These results suggest that weakly supervised learning could be used to improve the practical usefulness of information structure for real-life tasks in biomedicine.  相似文献   

2.
目的:近年来,随着生物医学领域文献数量的急骤增长,大量隐含的规律和新知被掩埋在浩如烟海的文献之中,而将文本挖掘技术应用于生物医学领域则可以对海量生物医学文献数据进行整合、分析,从而获得有价值的信息,提高人们对生物医学现象的认识。本文就我国近十年来文本挖掘技术在生物医学领域的应用现状进行文献计量学分析,旨在为我国科研工作者对该领域的进一步研究提供参考。方法:对国内正式发表的生物医学领域文本挖掘相关文献进行检索和筛选,分别从年度变化、地区分布、研究机构、期刊来源、研究领域等方面进行分析。结果:国内生物医学文本挖掘文献总量呈上升趋势,主要集中在挖掘算法的研究和文本挖掘技术在中医药及系统生物学领域的应用方面;北京、上海、广东等地的研究处于领先地位。结论:相比其他较为成熟的研究课题来说,目前文本挖掘技术在生物医学中的应用在国内还属于一个比较新的研究领域,但国内对该领域的认识正不断提高、研究正不断深入,初步形成了一批在该领域的核心研究地区、核心研究机构和核心研究领域,而对其进一步的研究,必将为生物医学领域的发展注入新的活力。  相似文献   

3.

Background  

Many practical tasks in biomedicine require accessing specific types of information in scientific literature; e.g. information about the results or conclusions of the study in question. Several schemes have been developed to characterize such information in scientific journal articles. For example, a simple section-based scheme assigns individual sentences in abstracts under sections such as Objective, Methods, Results and Conclusions. Some schemes of textual information structure have proved useful for biomedical text mining (BIO-TM) tasks (e.g. automatic summarization). However, user-centered evaluation in the context of real-life tasks has been lacking.  相似文献   

4.
A survey of current work in biomedical text mining   总被引:3,自引:0,他引:3  
The volume of published biomedical research, and therefore the underlying biomedical knowledge base, is expanding at an increasing rate. Among the tools that can aid researchers in coping with this information overload are text mining and knowledge extraction. Significant progress has been made in applying text mining to named entity recognition, text classification, terminology extraction, relationship extraction and hypothesis generation. Several research groups are constructing integrated flexible text-mining systems intended for multiple uses. The major challenge of biomedical text mining over the next 5-10 years is to make these systems useful to biomedical researchers. This will require enhanced access to full text, better understanding of the feature space of biomedical literature, better methods for measuring the usefulness of systems to users, and continued cooperation with the biomedical research community to ensure that their needs are addressed.  相似文献   

5.
A huge amount of important biomedical information is hidden in the bulk of research articles in biomedical fields. At the same time, the publication of databases of biological information and of experimental datasets generated by high-throughput methods is in great expansion, and a wealth of annotated gene databases, chemical, genomic (including microarray datasets), clinical and other types of data repositories are now available on the Web. Thus a current challenge of bioinformatics is to develop targeted methods and tools that integrate scientific literature, biological databases and experimental data for reducing the time of database curation and for accessing evidence, either in the literature or in the datasets, useful for the analysis at hand. Under this scenario, this article reviews the knowledge discovery systems that fuse information from the literature, gathered by text mining, with microarray data for enriching the lists of down and upregulated genes with elements for biological understanding and for generating and validating new biological hypothesis. Finally, an easy to use and freely accessible tool, GeneWizard, that exploits text mining and microarray data fusion for supporting researchers in discovering gene-disease relationships is described.  相似文献   

6.
The past decade has seen a tremendous growth in the amount of experimental and computational biomedical data, specifically in the areas of genomics and proteomics. This growth is accompanied by an accelerated increase in the number of biomedical publications discussing the findings. In the last few years, there has been a lot of interest within the scientific community in literature-mining tools to help sort through this abundance of literature and find the nuggets of information most relevant and useful for specific analysis tasks. This paper provides a road map to the various literature-mining methods, both in general and within bioinformatics. It surveys the disciplines involved in unstructured-text analysis, categorizes current work in biomedical literature mining with respect to these disciplines, and provides examples of text analysis methods applied towards meeting some of the current challenges in bioinformatics.  相似文献   

7.
Terminology-driven mining of biomedical literature   总被引:3,自引:0,他引:3  
MOTIVATION: With an overwhelming amount of textual information in molecular biology and biomedicine, there is a need for effective literature mining techniques that can help biologists to gather and make use of the knowledge encoded in text documents. Although the knowledge is organized around sets of domain-specific terms, few literature mining systems incorporate deep and dynamic terminology processing. RESULTS: In this paper, we present an overview of an integrated framework for terminology-driven mining from biomedical literature. The framework integrates the following components: automatic term recognition, term variation handling, acronym acquisition, automatic discovery of term similarities and term clustering. The term variant recognition is incorporated into terminology recognition process by taking into account orthographical, morphological, syntactic, lexico-semantic and pragmatic term variations. In particular, we address acronyms as a common way of introducing term variants in biomedical papers. Term clustering is based on the automatic discovery of term similarities. We use a hybrid similarity measure, where terms are compared by using both internal and external evidence. The measure combines lexical, syntactical and contextual similarity. Experiments on terminology recognition and clustering performed on a corpus of MEDLINE abstracts recorded the precision of 98 and 71% respectively. AVAILABILITY: software for the terminology management is available upon request.  相似文献   

8.
Text mining and ontologies in biomedicine: making sense of raw text   总被引:1,自引:0,他引:1  
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to locate, retrieve and manage the reported information without text mining, which aims to automatically distill information, extract facts, discover implicit links and generate hypotheses relevant to user needs. Ontologies, as conceptual models, provide the necessary framework for semantic representation of textual information. The principal link between text and an ontology is terminology, which maps terms to domain-specific concepts. This paper summarises different approaches in which ontologies have been used for text-mining applications in biomedicine.  相似文献   

9.
Rich information on point mutation studies is scattered across heterogeneous data sources. This paper presents an automated workflow for mining mutation annotations from full-text biomedical literature using natural language processing (NLP) techniques as well as for their subsequent reuse in protein structure annotation and visualization. This system, called mSTRAP (Mutation extraction and STRucture Annotation Pipeline), is designed for both information aggregation and subsequent brokerage of the mutation annotations. It facilitates the coordination of semantically related information from a series of text mining and sequence analysis steps into a formal OWL-DL ontology. The ontology is designed to support application-specific data management of sequence, structure, and literature annotations that are populated as instances of object and data type properties. mSTRAPviz is a subsystem that facilitates the brokerage of structure information and the associated mutations for visualization. For mutated sequences without any corresponding structure available in the Protein Data Bank (PDB), an automated pipeline for homology modeling is developed to generate the theoretical model. With mSTRAP, we demonstrate a workable system that can facilitate automation of the workflow for the retrieval, extraction, processing, and visualization of mutation annotations -- tasks which are well known to be tedious, time-consuming, complex, and error-prone. The ontology and visualization tool are available at (http://datam.i2r.a-star.edu.sg/mstrap).  相似文献   

10.
Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians.  相似文献   

11.
For the average biologist, hands-on literature mining currently means a keyword search in PubMed. However, methods for extracting biomedical facts from the scientific literature have improved considerably, and the associated tools will probably soon be used in many laboratories to automatically annotate and analyse the growing number of system-wide experimental data sets. Owing to the increasing body of text and the open-access policies of many journals, literature mining is also becoming useful for both hypothesis generation and biological discovery. However, the latter will require the integration of literature and high-throughput data, which should encourage close collaborations between biologists and computational linguists.  相似文献   

12.
MOTIVATION: The recent explosion of interest in mining the biomedical literature for associations between defined entities such as genes, diseases and drugs has made apparent the need for robust methods of identifying occurrences of these entities in biomedical text. Such concept-based indexing is strongly dependent on the availability of a comprehensive ontology or lexicon of biomedical terms. However, such ontologies are very difficult and expensive to construct, and often require extensive manual curation to render them suitable for use by automatic indexing programs. Furthermore, the use of statistically salient noun phrases as surrogates for curated terminology is not without difficulties, due to the lack of high-quality part-of-speech taggers specific to medical nomenclature. RESULTS: We describe a method of improving the quality of automatically extracted noun phrases by employing prior knowledge during the HMM training procedure for the tagger. This enhancement, when combined with appropriate training data, can greatly improve the quality and relevance of the extracted phrases, thereby enabling greater accuracy in downstream literature mining tasks.  相似文献   

13.
MOTIVATION: Much current research in biomedical text mining is concerned with serving biologists by extracting certain information from scientific text. We note that there is no 'average biologist' client; different users have distinct needs. For instance, as noted in past evaluation efforts (BioCreative, TREC, KDD) database curators are often interested in sentences showing experimental evidence and methods. Conversely, lab scientists searching for known information about a protein may seek facts, typically stated with high confidence. Text-mining systems can target specific end-users and become more effective, if the system can first identify text regions rich in the type of scientific content that is of interest to the user, retrieve documents that have many such regions, and focus on fact extraction from these regions. Here, we study the ability to characterize and classify such text automatically. We have recently introduced a multi-dimensional categorization and annotation scheme, developed to be applicable to a wide variety of biomedical documents and scientific statements, while intended to support specific biomedical retrieval and extraction tasks. RESULTS: The annotation scheme was applied to a large corpus in a controlled effort by eight independent annotators, where three individual annotators independently tagged each sentence. We then trained and tested machine learning classifiers to automatically categorize sentence fragments based on the annotation. We discuss here the issues involved in this task, and present an overview of the results. The latter strongly suggest that automatic annotation along most of the dimensions is highly feasible, and that this new framework for scientific sentence categorization is applicable in practice.  相似文献   

14.
ABSTRACT: BACKGROUND: A scientific name for an organism can be associated with almost all biological data. Name identification is an important step in many text mining tasks aiming to extract useful information from biological, biomedical and biodiversity text sources. A scientific name acts as an important metadata element to link biological information. RESULTS: We present NetiNeti (Name Extraction from Textual Information-Name Extraction for Taxonomic Indexing), a machine learning based approach for recognition of scientific names including the discovery of new species names from text that will also handle misspellings, OCR errors and other variations in names. The system generates candidate names using rules for scientific names and applies probabilistic machine learning methods to classify names based on structural features of candidate names and features derived from their contexts. NetiNeti can also disambiguate scientific names from other names using the contextual information. We evaluated NetiNeti on legacy biodiversity texts and biomedical literature (MEDLINE). NetiNeti performs better (precision = 98.9 % and recall = 70.5 %) compared to a popular dictionary based approach (precision = 97.5 % and recall = 54.3 %) on a 600-page biodiversity book that was manually marked by an annotator. On a small set of PubMed Central's full text articles annotated with scientific names, the precision and recall values are 98.5 % and 96.2 % respectively. NetiNeti found more than 190,000 unique binomial and trinomial names in more than 1,880,000 PubMed records when used on the full MEDLINE database. NetiNeti also successfully identifies almost all of the new species names mentioned within web pages. Additionally, we present the comparison results of various machine learning algorithms on our annotated corpus. Naive Bayes and Maximum Entropy with Generalized Iterative Scaling (GIS) parameter estimation are the top two performing algorithms. CONCLUSIONS: We present NetiNeti, a machine learning based approach for identification and discovery of scientific names. The system implementing the approach can be accessed at http://namefinding.ubio.org.  相似文献   

15.
Categorization of biomedical articles is a central task for supporting various curation efforts. It can also form the basis for effective biomedical text mining. Automatic text classification in the biomedical domain is thus an active research area. Contests organized by the KDD Cup (2002) and the TREC Genomics track (since 2003) defined several annotation tasks that involved document classification, and provided training and test data sets. So far, these efforts focused on analyzing only the text content of documents. However, as was noted in the KDD'02 text mining contest-where figure-captions proved to be an invaluable feature for identifying documents of interest-images often provide curators with critical information. We examine the possibility of using information derived directly from image data, and of integrating it with text-based classification, for biomedical document categorization. We present a method for obtaining features from images and for using them-both alone and in combination with text-to perform the triage task introduced in the TREC Genomics track 2004. The task was to determine which documents are relevant to a given annotation task performed by the Mouse Genome Database curators. We show preliminary results, demonstrating that the method has a strong potential to enhance and complement traditional text-based categorization methods.  相似文献   

16.
In this paper, we present a novel approach Bio-IEDM (biomedical information extraction and data mining) to integrate text mining and predictive modeling to analyze biomolecular network from biomedical literature databases. Our method consists of two phases. In phase 1, we discuss a semisupervised efficient learning approach to automatically extract biological relationships such as protein-protein interaction, protein-gene interaction from the biomedical literature databases to construct the biomolecular network. Our method automatically learns the patterns based on a few user seed tuples and then extracts new tuples from the biomedical literature based on the discovered patterns. The derived biomolecular network forms a large scale-free network graph. In phase 2, we present a novel clustering algorithm to analyze the biomolecular network graph to identify biologically meaningful subnetworks (communities). The clustering algorithm considers the characteristics of the scale-free network graphs and is based on the local density of the vertex and its neighborhood functions that can be used to find more meaningful clusters with different density level. The experimental results indicate our approach is very effective in extracting biological knowledge from a huge collection of biomedical literature. The integration of data mining and information extraction provides a promising direction for analyzing the biomolecular network  相似文献   

17.
BACKGROUND: The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). RESULTS: This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. CONCLUSIONS: Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations can be exploited for integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces.  相似文献   

18.
Systematic extraction of relevant biological facts from available massive scientific knowledge source is emerging as a significant task for the science community. Its success depends on several key factors, including the precision of a given search, the time of its accomplishment, and the communicative prowess of the mined information to the users. GeneCite - a stand-alone Java-based high-throughput data mining tool - is designed to carry out these tasks for several important knowledge sources simultaneously, allowing the users to integrate the results and interpret biological significance in a time-efficient manner. GeneCite provides an integrated high-throughput search platform serving as an information retrieval (IR) tool for probing online literature database (PubMed) and the sequence-tagged sites' database (UniSTS), respectively. It also operates as a data retrieval (DR) tool to mine an archive of biological pathways integrated into the software itself. Furthermore, GeneCite supports a retrieved data management system (DMS) showcasing the final output in a spread-sheet format. Each cell of the output file holds a real-time connection (hyperlink) to the given online archive reachable at the users' convenience. The software is free and currently available online www.bioinformatics.org; www.wrair.army.mil/Resources.  相似文献   

19.

Background  

While biomedical text mining is emerging as an important research area, practical results have proven difficult to achieve. We believe that an important first step towards more accurate text-mining lies in the ability to identify and characterize text that satisfies various types of information needs. We report here the results of our inquiry into properties of scientific text that have sufficient generality to transcend the confines of a narrow subject area, while supporting practical mining of text for factual information. Our ultimate goal is to annotate a significant corpus of biomedical text and train machine learning methods to automatically categorize such text along certain dimensions that we have defined.  相似文献   

20.
《BIOSILICO》2003,1(2):69-80
The information age has made the electronic storage of large amounts of data effortless. The proliferation of documents available on the Internet, corporate intranets, news wires and elsewhere is overwhelming. Search engines only exacerbate this overload problem by making increasingly more documents available in only a few keystrokes. This information overload also exists in the biomedical field, where scientific publications, and other forms of text-based data are produced at an unprecedented rate. Text mining is the combined, automated process of analyzing unstructured, natural language text to discover information and knowledge that are typically difficult to retrieve. Here, we focus on text mining as applied to the biomedical literature. We focus in particular on finding relationships among genes, proteins, drugs and diseases, to facilitate an understanding and prediction of complex biological processes. The LitMiner™ system, developed specifically for this purpose; is described in relation to the Knowledge Discovery and Data Mining Cup 2002, which serves as a formal evaluation of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号