首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Venezuelan equine encephalitis virus (VEEV), a member of the membrane‐containing Alphavirus genus, is a human and equine pathogen, and has been developed as a biological weapon. Using electron cryo‐microscopy (cryo‐EM), we determined the structure of an attenuated vaccine strain, TC‐83, of VEEV to 4.4 Å resolution. Our density map clearly resolves regions (including E1, E2 transmembrane helices and cytoplasmic tails) that were missing in the crystal structures of domains of alphavirus subunits. These new features are implicated in the fusion, assembly and budding processes of alphaviruses. Furthermore, our map reveals the unexpected E3 protein, which is cleaved and generally thought to be absent in the mature VEEV. Our structural results suggest a mechanism for the initial stage of nucleocapsid core formation, and shed light on the virulence attenuation, host recognition and neutralizing activities of VEEV and other alphavirus pathogens.  相似文献   

2.
3.
4.
Recent findings of potential implications of glycogen synthase kinase-3β (GSK-3β) dysfunction in psychiatric disorders like depression, have increased focus for development of GSK-3β inhibitors with possible anti-depressant activity. Keeping this in view, we synthesized a series of benzimidazole-linked-1,3,4-oxadiazole carboxamides and evaluated them for in vitro GSK-3β inhibition. Active compounds were investigated for in vivo antidepressant activity in Wistar rats. Docking studies of active compounds have also been performed. Among nineteen compounds synthesized, compounds 7a, 7r, 7j, and 7d exhibited significant potency against GSK-3β in sub-micromolar range with IC50 values of 0.13 μM, 0.14 μM, 0.20 μM, 0.22 μM respectively and significantly reduced immobility time (antidepressant-like activity) in rats compared to control group. Docking study showed key interactions of these compounds with GSK-3β. These compounds may thus serve as valuable candidates for subsequent development of effective drugs against depression and related disorders.  相似文献   

5.
<正>Dear Editor,The 2015–2016 outbreak of Zika virus(ZIKV)fever,first reported in Brazil during early 2015(Zanluca et al.,2015),has infected millions of people and is a global public health concern.ZIKV infections are associated with fetal microcephaly,as well as neurological complications  相似文献   

6.

Introduction

The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification.

Methods

Palates were harvested from GSK-3β, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3β null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3β and Ihh +/+ and −/− e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists.

Results

GSK-3β null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3β null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3β −/− palate cultures were “rescued” with the Wnt inhibitor, Dkk-1.

Conclusions

Here, we identify a critical role for GSK-3β in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.  相似文献   

7.
8.
9.
Here we report on the discovery of a series of maleimides which have high potency and good selectivity for GSK-3β. The incorporation of polar groups afforded compounds with good bioavailability. The most potent compound 34 has an IC50 of 0.6 nM for GSK-3β, over 100-fold selectivity against a panel of other kinases, and shows efficacy in rat osteoporosis models. The X-ray structure of GSK-3β protein with 34 bound revealed the binding mode of the template and provided insights for future optimization opportunities.  相似文献   

10.
ST2 gene products that are members of IL-1 receptor family are expressed in various cells such as growth-stimulated fibroblasts and Th2 helper T-cells, and recently, IL-33, which belongs to IL-1 family, was identified as the ligand for ST2L, the receptor type product of the ST2 gene. Subsequently, IL-33 and ST2L have been reported to be involved in Th2 immunity and inflammation, however, their functions on non-immunological cells are still obscure. Among non-immunological adhesive cells, vascular endothelial cells were reported to express both ST2 gene products and IL-33, therefore, we investigated the expression manner of the ST2 gene in vascular endothelial cells and the effect of IL-33 on endothelial cells. ST2 gene was expressed in each of the vascular endothelial cell types tested, and the expression was growth-dependent and down-regulated when the cells were differentiated to form vascular structures on the extracellular membrane matrix. IL-33 scarcely affected the growth and tube formation of the endothelial cells, but induced IL-6 and IL-8 secretion from endothelial cells with the rapid activation of extracellular signal-regulated kinase (ERK) 1/2, so IL-33 is supposed to involve in inflammatory reaction of vascular endothelial cells through its receptor, ST2L.  相似文献   

11.
Shi J  Wu S  Dai CL  Li Y  Grundke-Iqbal I  Iqbal K  Liu F  Gong CX 《FEBS letters》2012,586(16):2443-2450
Protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) are major components of insulin-AKT signaling that plays crucial roles in various types of tissue. Recent studies found that these two kinases are modified posttranslationally by O-GlcNAcylation. Here, we demonstrate that O-GlcNAcylation regulated phosphorylation/activation of AKT and GSK-3β in different manners in kidney HEK-293FT cells, but did not affect these two kinases in hepatic HepG2 cells. In neuronal cells, O-GlcNAcylation regulated phosphorylation of AKT negatively, but had no effect on GSK-3β. These results suggest protein-specific and cell type-specific regulation of AKT and GSK-3β by O-GlcNAcylation. Therefore, studies on the roles of AKT and GSK-3β O-GlcNAcylation should be done in a tissue- and cell type-specific manner.  相似文献   

12.
Dangsheng Li 《Cell research》2006,16(7):609-609
Ovarian cancer is one of the most lethal malignancies in women. Identification of new therapeutic targets would provide opportunities for developing potentially more effective treatment regimes. In the July issue of Cell Research, Cao et al. reports that glycogen synthase kinase-3β (GSK-3β) plays an important role in positively regulating the proliferation of human ovarian cancer cells, and thus it may represent such a target [ 1 ]. GSK-3β is a serine/threonine kinase that is known to be involved in regulation of β-catenin signaling, where it participates in the formation of a multi-component destruction complex that promotes the phosphorylation and subsequent degradation of β-catenin. Given that overactive β-catenin signaling is involved in many forms of human cancer, this classic mode of GSK-3β action should qualify it as a "tumor suppressor". Intriguingly, however, two recent studies have implicated that GSK-3β may actually play a pro-tumor role in pancreatic and colorectal cancers [2, 3]. Since ovarian tumors often exhibit increased expression of GSK-3β, these recent findings prompted Cao et al. to examine the potential role of GSK-3β in ovarian cancer cells.  相似文献   

13.
Glycogen synthase kinase-3β (GSK-3β) is involved in a wide variety of cellular processes, and implicated in a growing list of human diseases. Recent drug inhibition studies have suggested a role for GSK-3β in mitosis in animals. Here, we take an alternative approach to understanding GSK-3β function in mitosis by genetic mutational analysis in Drosophila. GSK-3β function is well conserved between Drosophila (Zw3) and humans, frequently operating similarly in pathways, as diverse as the Wnt signaling and circadian rhythm pathways, and sharing a key role in the development of the neuromuscular junction. Unlike drug inhibitor studies, we find that loss of function mutations of zw3 result in markedly curved, or bent, metaphase spindles that exhibit metaphase delay. These defects do not routinely result in mitotic catastrophe, and argue that Zw3 plays a role in the maintenance of the mitotic spindle, rather than an essential role in spindle morphogenesis. Consistent with a mitotic function, we observe a complex and dynamic localization of Zw3 during cell division. These studies provide genetic data that validate and extend drug inhibition studies on a novel mitotic role for glycogen synthase kinase in the maintenance of the mitotic spindle.  相似文献   

14.
Changes in the morphology of dendritic spines are prominent during learning and in different neurological and neuropsychiatric diseases, including those in which glycogen synthase kinase-3β (GSK-3β) has been implicated. Despite much evidence of the involvement of GSK-3β in functional synaptic plasticity, it is unclear how GSK-3β controls structural synaptic plasticity (i.e., the number and shape of dendritic spines). In the present study, we used two mouse models overexpressing and lacking GSK-3β in neurons to investigate how GSK-3β affects the structural plasticity of dendritic spines. Following visualization of dendritic spines with DiI dye, we found that increasing GSK-3β activity increased the number of thin spines, whereas lacking GSK-3β increased the number of stubby spines in the dentate gyrus. Under conditions of neuronal excitation, increasing GSK-3β activity caused higher activity of extracellularly acting matrix metalloproteinase-9 (MMP-9), and MMP inhibition normalized thin spines in GSK-3β overexpressing mice. Administration of the nonspecific GSK-3β inhibitor lithium in animals with active MMP-9 and animals lacking MMP-9 revealed that GSK-3β and MMP-9 act in concert to control dendritic spine morphology. Altogether, our data demonstrate that the dysregulation of GSK-3β activity has dramatic consequences on dendritic spine morphology, implicating MMP-9 as a mediator of GSK-3β-induced synaptic alterations.  相似文献   

15.
16.
Aβ peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer''s disease (AD), with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3) is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Aβ42 specifically in adult neurons, to avoid developmental effects. Aβ42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Aβ42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment) rescued Aβ42 toxicity. Aβ42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Aβ42. The GSK-3–mediated effects on Aβ42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Aβ42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Aβ42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Aβ42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD.  相似文献   

17.
Activation of GSK-3β is presumed to be involved in various neurodegenerative diseases, including Alzheimer''s disease (AD), which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3β in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3β knockout (GSK+/−) mice to form memories. In the Morris water maze (MWM), learning and memory performance of GSK+/− mice was no different from that of wild-type (WT) mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/− mice, suggesting that GSK+/− mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC), context memory was normally consolidated in GSK+/− mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/− mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3β was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3β in the adult brain.  相似文献   

18.
Curcumin has been reported to attenuate muscle atrophy. However, the underling mechanism remains unclear. The aim of this study was to investigate whether curcumin could improve chronic kidney disease (CKD)-induced muscle atrophy and mitochondrial dysfunction by inhibiting glycogen synthase kinase-3β (GSK-3β) activity. The sham and CKD mice were fed either a control diet or an identical diet containing 0.04% curcumin for 12 weeks. The C2C12 myotubes were treated with H2O2 in the presence or absence of curcumin. In addition, wild-type and muscle-specific GSK-3β knockout (KO) CKD model mice were made by 5/6 nephrectomy, and the sham was regarded as control. Curcumin could exert beneficial effects, including weight maintenance and improved muscle function, increased mitochondrial biogenesis, alleviated mitochondrial dysfunction by increasing adenosine triphosphate levels, activities of mitochondrial electron transport chain complexes and basal mitochondrial respiration and suppressing mitochondrial membrane potential. In addition, curcumin modulated redox homeostasis by increasing antioxidant activity and suppressed mitochondrial oxidative stress. Moreover, the protective effects of curcumin had been found to be mediated via inhibiting GSK-3β activity in vitro and in vivo. Importantly, GSK-3β KO contributed to improved mitochondrial function, attenuated mitochondrial oxidative damage and augmented mitochondrial biogenesis in muscle of CKD. Overall, this study suggested that curcumin alleviated CKD-induced mitochondrial oxidative damage and mitochondrial dysfunction via inhibiting GSK-3β activity in skeletal muscle.  相似文献   

19.
Altered neurogenesis has been reported in Alzheimer disease (AD), the most common neurodegenerative disorder characterized with hyperphosphorylated tau and accumulation of β-amyloid (Aβ). Recent studies suggest that tau phosphorylation is essential for hippocampal neurogenesis, however, it is not known whether tau phosphorylation also play a role in neurogenesis of subventricular zone (SVZ), another main progenitor niche in the brain. Here, we examined the expression of phosphorylated tau (p-tau) in SVZ and analyzed the role of p-tau in adult SVZ neurogenesis. We found that the expression of p-tau increased during postnatal development and remains at a high level until adulthood, and the p-tau was colocalized with some SVZ neural precursors. However, up-regulating glycogen synthase kinase-3 (GSK-3), a crucial tau kinase, had no effect on SVZ neurogenesis in adult rat brain. The SVZ neurogenesis was also unaffected in tau knockout and human tau transgenic mice. These results suggest that tau phosphorylation and GSK-3 activation may not be essential for adult SVZ neurogenesis.  相似文献   

20.
Glycogen synthase kinase-3β (GSK-3β) is an attractive therapeutic target for human diseases, such as diabetes, cancer, neurodegenerative diseases, and inflammation. Thus, structure-based virtual screening was performed to identify novel scaffolds of GSK-3β inhibitors, and we observed that conserved water molecules of GSK-3β were suitable for virtual screening. We found 14 hits and D1 (IC50 of 0.71?μM) were identified. Furthermore, the neuroprotection activity of D1D3 was validated on a cellular level. 2D similarity searches were used to find derivatives of high inhibitory compounds and an enriched structure–activity relationship suggested that these skeletons were worthy of study as potent GSK-3β inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号