首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication appear to be restricted mainly to equine cells. The clear difference in cellular tropism may well be associated with differences in the gene products involved in virus entry and/or spread from cell to cell. Here we show that (i) most of the EHV-1 permissive cell lines became resistant to EHV-1 expressing EHV-4 glycoprotein D (gD4) and the opposite was observed for EHV-4 harboring EHV-1 gD (gD1). (ii) The absence of integrins did not inhibit entry into and replication of EHV-1 in CHO-K1 or peripheral blood mononuclear cells (PBMC). Furthermore, integrin-negative K562 cells did not acquire the ability to bind to gD1 when αVβ3 integrin was overexpressed. (iii) PBMC could be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. (iv) In contrast to results for equine fibroblasts and cells of endothelial or epithelial origin, we were unable to block entry of EHV-1 or EHV-4 into PBMC with antibodies directed against major histocompatibility complex class I (MHC-I), a result that indicates that these viruses utilize a different receptor(s) to infect PBMC. Cumulatively, we provide evidence that efficient EHV-1 and EHV-4 entry is dependent mainly on gD, which can bind to multiple cell surface receptors, and that gD has a defining role with respect to cellular host range of EHV-1 and EHV-4.  相似文献   

3.
In the horse, the risk of excretion of two major equine pathogens (equine herpesvirus types 1 (EHV-1) and 4 (EHV-4)) in semen is unknown. The objective of our study was to assess the possible risks for the horizontal transmission of equine rhinopneumonitis herpesviruses via the semen and the effect of the viruses on stallion fertility.Samples of stallion semen (n = 390) were gathered from several different sources. Examination of the semen involved the detection of viral DNA using specific PCR. The mean fertility of the stallions whose sperm tested positive for viral DNA and the mean fertility of stallions whose sperm did not contain viral DNA, were compared using the Student's t-test.EHV-4 viral DNA was not detected in any of the semen samples. EHV-1 DNA was identified in 51 of the 390 samples, (13%). One hundred and eighty-two samples came from 6 studs and there was significant difference (p < 0.05) among the proportion of stallions whose semen tested positive for viral DNA from 0 to 55% between the studs.There was a significant difference (p < 0.014) between the fertility of stallions whose semen tested positive for viral DNA and those whose semen was free from viral DNA. The stallions that excreted the EHV-1 virus in their semen appeared to be more fertile than the non-excretors, but this difference was in fact related to the breeding technique since higher proportion of excretors were found among those whose semen was used fresh rather than preserved by cooling or freezing.In conclusion, this study suggests that the EHV-1 virus may be transmitted via the semen at mating or by artificial insemination as demonstrated with other herpes viruses in other species.  相似文献   

4.

Background  

Equine herpesvirus 2 is a gamma-herpesvirus that infects horses worldwide. Although EHV-2 has been implicated in immunosuppression in foals, upper respiratory tract disease, conjunctivitis, general malaise and poor performance, its precise role as a pathogen remains uncertain. The purpose of the present study was to analyse the incidence of EHV-2 in an Argentinean horse population and correlate it with age and clinical status of the animals.  相似文献   

5.
In 2007, BTV-8 re-emerged for the second year in the Netherlands and caused morbidity and increased mortality in cattle herds. In addition, cattle farmers reported reduced fertility in their cows. For this study, fifteen herds that were not vaccinated were selected. These were matched to 10 vaccinated herds by geographic region. At the start of the study, in July 2008, all cattle in the non-vaccinated herds >1 year old were sampled. All seronegative cows entered the study program and blood samples from these cows were tested for antibodies against BTV-8 in an ELISA. Cows were sampled at intervals of three weeks and sampling was stopped once a cow tested seropositive. Sampling ceased in all remaining cows in December 2008.Newborn calves originating from infected dams or from vaccinated dams were tested by PCR for BTV-8. Fertility data were obtained from the Royal Dutch Cattle Syndicate (CRV). Multi-level generalized latent and linear models were used for analyses.In 2008, 185 (17.2%) out of 1,074 initially seronegative non-vaccinated cattle seroconverted and were assumed to be infected with BTV-8. Infected cows were 5 (95% CI: 1.9-14.3) times more likely to return for insemination within 56 days after first insemination. In addition, these cows needed 1.7 (95% CI: 1.4-2.0) times more inseminations for an assumed pregnancy, and needed 2.5 (95% CI: 2.4-2.6) times more days between first and last insemination compared to the period prior to seroconversion and compared to cows not infected by BTV-8 in 2008. No association between BTV-8 infection and the chance to abort between 100 and 260 days after last insemination was found.In total, 48 calves originating from infected cows were tested by PCR for the presence of BTV-8. Ten (20.8%) out of these 48 calves were born PCR-positive. None of 256 calves from vaccinated dams tested PCR-positive. Further, cows infected during the second half of gestation had a 15.5 times (95% CI: 1.3-190.4) higher chance of a PCR-positive newborn calf compared to cows infected in the first half of gestation. This study showed that BTV-8 has a negative effect on fertility of dairy cattle.  相似文献   

6.
正Dear Editor,Infectious bursal disease virus(IBDV)causes infectious bursal disease,a highly contagious immunosuppressive disease that affects young chickens and causes economic losses in the poultry industry worldwide.IBDV replicates mainly in actively dividing B lymphocytes within the bursa of Fabricius(BF),leading to immunosuppression in affected flocks(Mahgoub et al.,2012).Viral protein 2(VP2),the only structural component of the IBDV  相似文献   

7.
Bluetongue virus (BTV) is a member of Orbivirus genus in family Reoviridae. The virus genome is composed of 10 double-stranded RNA segments. The RNA segment L2 encodes an outer capsid viral protein VP2, which is the main determinant of neutralization and serotype-specific immune response. BTV serotype 1 (BTV-1) specific novel primer pair was designed using VP2 gene sequences available in GenBank to amplify 1240-1844 bp region because two hypervariable and three conserved regions have been reported within these 604 nucleotides. This primer pair successfully amplified cell culture adapted six Indian isolates of BTV-1 from different geographical regions of the country. The 604 bp PCR product of VP2 gene of all six BTV-1 yielded two fragments of 273 and 331 bp when digested with Taq1 restriction enzyme. This indicated that there is only one TaqI site at 1513 bp (within 1240-1844 bp region) of VP2 gene of BTV-1 Indian isolates. The in silico restriction analysis revealed that in BTV-1 South African isolate (BTV-1SA) there is no TaqI site while in BTV-1 Australian isolates (BTV-1AUS), there are two TaqI sites (at 1513 and 1567 bp) within 1240-1844 bp region of VP2 gene. The earlier reported VP2 gene based primer pair for BTV-1 was used in the present study to amplify 2242-2933 bp region of six BTV-1 Indian isolates as three conserved regions have been reported within these 691 nucleotides. The digestion of 691 bp PCR products with XmnI yielded three fragments of 364, 173 and 154 bp with all the six Indian isolates of BTV-1 suggesting that there are two XmnI sites within 2242-2933 bp region of VP2 gene. A single XmnI site was observed in silico in BTV-1AUS and BTV-1SA isolates at different positions within this region. The in vitro and in silico restriction profile analyses of partial VP2 gene sequences using TaqI and XmnI restriction enzymes indicated a close relationship of Indian isolates of BTV-1 with BTV-1AUS isolates but not with BTV-1SA isolate.  相似文献   

8.
The equine herpesvirus 1 (EHV-1) alpha-trans-inducing factor homologue (ETIF; VP16-E) is a 60-kDa virion component encoded by gene 12 (ORF12) that transactivates the immediate-early gene promoter. Here we report on the function of EHV-1 ETIF in the context of viral infection. An ETIF-null mutant from EHV-1 strain RacL11 (vL11deltaETIF) was constructed and analyzed. After transfection of vL11deltaETIF DNA into RK13 cells, no infectious virus could be reconstituted, and only single infected cells or small foci containing up to eight infected cells were detected. In contrast, after transfection of vL11deltaETIF DNA into a complementing cell line, infectious virus could be recovered, indicating the requirement of ETIF for productive virus infection. The growth defect of vL11deltaETIF could largely be restored by propagation on the complementing cell line, and growth on the complementing cell line resulted in incorporation of ETIF in mature and secreted virions. Low- and high-multiplicity infections of RK13 cells with phenotypically complemented vL11deltaETIF virus resulted in titers of virus progeny similar to those used for infection, suggesting that input ETIF from infection was recycled. Ultrastructural studies of vL11deltaETIF-infected cells demonstrated a marked defect in secondary envelopment at cytoplasmic membranes, resulting in very few enveloped virions in transport vesicles or extracellular space. Taken together, our results demonstrate that ETIF has an essential function in the replication cycle of EHV-1, and its main role appears to be in secondary envelopment.  相似文献   

9.
Wild-type equine herpesvirus 1 (EHV-1) strains express a large (250-kDa) glycoprotein, gp2, that is encoded by EUs4 (gene 71) located within the unique short region of the genome. DNA sequence analysis revealed that EUs4 of the pathogenic EHV-1 strain RacL11 is an open reading frame of 2,376 bp that encodes a protein of 791 amino acids. The attenuated EHV-1 vaccine strain KyA harbors an in-frame deletion of 1,242 bp from bp 222 to 1461 and expresses a truncated gp2 of 383 amino acids. To determine the relative contribution of gp2 to EHV-1 pathogenesis, we compared the course of respiratory infection of CBA mice infected with either wild-type RacL11, attenuated KyA, or a recombinant KyA that expresses the full-length gp2 protein (KyARgp2F). Mice infected with KyA lost a negligible amount of body weight (0.18% total weight loss) on day 1 postinfection and regained weight thereafter, whereas mice infected with KyARgp2F or RacL11 steadily lost weight beginning on day 1 and experienced a 20 and 18% loss in body weight, respectively, by day 3. Immunohistochemical and flow cytometric analyses revealed higher numbers of T and B lymphocytes and an extensive consolidation consisting of large numbers of Mac-1-positive cells in the lungs of animals infected with KyARgp2F compared to animals infected with KyA. RNase protection analyses revealed increased expression of numerous cytokines and chemokines, including interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, MIP-2, interferon gamma-inducible protein, monocyte chemotactic protein 1, and T-cell activation gene 3 at 12 h postinfection with KyARgp2F. Three independent DNA array experiments confirmed these results and showed a 2- to 13-fold increase in the expression of 31 inflammatory genes at 8 and 12 h postinfection with KyARgp2F compared to infection with KyA. Taken together, the results indicate that expression of full-length gp2 is sufficient to restore full respiratory virulence to the attenuated KyA strain and raise caution concerning the inclusion of full-length gp2 in the development of EHV-1 vaccines.  相似文献   

10.
11.
Most equine herpesvirus 1 (EHV-1) strains, including the naturally occurring virulent RacL11 isolate, encode a large glycoprotein, gp2 (250 kDa), which is expressed from gene 71. Besides other alterations in the viral genome, the avirulent strain KyA harbors an in-frame deletion of 1,242 nucleotides in gene 71. To examine the contributions of gp2 variation to virus growth and virulence, mutant RacL11 and KyA viruses expressing full-length or truncated gp2 were generated. Western blot analyses demonstrated expression of a 250-kDa gp2 in cells infected with RacL11 virus or a mutant KyA virus harboring full-length gene 71, whereas a 75- to 80-kDa gp2 was detected in cells infected with KyA or mutant RacL11 virus expressing KyA gp2. The RacL11 gp2 precursor of 250 kDa in size and its truncated KyA counterpart of 80 kDa, as well as the 42-kDa carboxy-terminal gp2 subunit, were incorporated into virus particles. Absence of gp2 in RacL11 resulted in a 6-fold reduction of extracellular virus titers and a 13% reduction of plaque diameters, whereas gp2-negative KyA exhibited a 55% reduction in plaque diameter and a 51-fold decrease in extracellular virus titers. The massive growth defects of gp2-negative KyA could be restored by reinsertion of the truncated but not the full-length gp2 gene. The virulence of the generated gp2 mutant viruses was compared to the virulence of KyA and RacL11 in a murine infection model. RacL11 lacking gp2 was apathogenic for BALB/c mice, and insertion of the truncated KyA gp2 gene into RacL11 was unable to restore virulence. Similarly, replacement in the KyA genome of the truncated with the full-length RacL11 gene 71 did not result in the generation of virulent virus. From the results we conclude that full-length and truncated EHV-1 gp2 are not functionally equivalent and cannot compensate for the action of their homologues in allogeneic virus backgrounds.  相似文献   

12.
Marek's disease herpesvirus is a vaccine vector of great promise for chickens; however, complete protection against foreign infectious diseases has not been achieved. In this study, two herpesvirus of turkey recombinants (rHVTs) expressing large amounts of infectious bursal disease virus (IBDV) VP2 antigen under the control of a human cytomegalovirus (CMV) promoter or CMV/beta-actin chimera promoter (Pec promoter) (rHVT-cmvVP2 and rHVT-pecVP2) were constructed. rHVT-pecVP2, which expressed the VP2 antigen approximately four times more than did rHVT-cmvVP2 in vitro, induced complete protection against a lethal IBDV challenge in chickens, whereas rHVT-cmvVP2 induced 58% protection. All of the chickens vaccinated with rHVT-pecVP2 had a protective level of antibodies to the VP2 antigen at the time of challenge, whereas only 42 and 67% of chickens vaccinated with rHVT-cmvVP2 or the conventional live IBDV vaccine, respectively, had the antibodies. The antibody level of chickens vaccinated with rHVT-pecVP2 increased for 16 weeks, and the peak antibody level persisted throughout the experiment. The serum antibody titer at 30 weeks of age was about 20 or 65 times higher than that of chickens vaccinated with rHVT-cmvVP2 or the conventional live vaccine, respectively. rHVT-pecVP2, isolated consistently for 30 weeks from the vaccinated chickens, expressed the VP2 antigen after cultivation, and neither nucleotide mutations nor deletion in the VP2 gene was found. These results demonstrate that the amount of VP2 antigen expressed in the HVT vector was correlated with the vaccine efficacy against lethal IBDV challenge, and complete protective immunity that is likely to persist for the life of the chickens was induced.  相似文献   

13.
We expressed the bovine herpesvirus 1 (BHV-1) glycoprotein IV (gIV) in bovine cells. The protein expressed was identical in molecular mass and antigenic reactivity to the native gIV protein but was localized in the cytoplasm. Expressing cells were partially resistant to BHV-1, herpes simplex virus, and pseudorabies virus, as shown by a 10- to 1,000-fold-lower number of plaques forming on these cells than on control cells. The level of resistance depended on the level of gIV expression and the type and amount of challenge virus. These data are consistent with previous reports by others that cellular expression of the BHV-1 gIV homologs, herpes simplex virus glycoprotein D, and pseudorabies virus glycoprotein gp50 provide partial resistance against infection with these viruses. We have extended these findings by showing that once BHV-1 enters gIV-expressing cells, it replicates and spreads normally, as shown by the normal size of BHV-1 plaques and the delayed but vigorous synthesis of viral proteins. Our data are consistent with the binding of BHV-1 gIV to a cellular receptor required for initial penetration by all three herpesviruses and interference with the function of that receptor molecule.  相似文献   

14.
BackgroundMany ruminant diseases of viral aetiology can be effectively prevented using appropriate vaccination measures. For diseases such as Rift Valley fever (RVF) the long inter-epizootic periods make routine vaccination programs unfeasible. Coupling RVF prophylaxis with seasonal vaccination programmes by means of multivalent vaccine platforms would help to reduce the risk of new RVF outbreaks.Methodology/Principal findingsIn this work we generated recombinant attenuated Rift Valley fever viruses (RVFVs) encoding in place of the virulence factor NSs either the VP2 capsid protein or a truncated form of the non-structural NS1 protein of bluetongue virus serotype 4 (BTV-4). The recombinant viruses were able to carry and express the heterologous BTV genes upon consecutive passages in cell cultures. In murine models, a single immunization was sufficient to protect mice upon RVFV challenge and to elicit a specific immune response against BTV-4 antigens that was fully protective after a BTV-4 boost. In sheep, a natural host for RVFV and BTV, both vaccines proved immunogenic although conferred only partial protection after a virulent BTV-4 reassortant Morocco strain challenge.Conclusions/SignificanceThough additional optimization will be needed to improve the efficacy data against BTV in sheep, our findings warrant further developments of attenuated RVFV as a dual vaccine platform carrying heterologous immune relevant antigens for ruminant diseases in RVF risk areas.  相似文献   

15.
The human immunodeficiency virus type 1 strain MN (HIV-1MN) principal neutralizing determinant (PND, V3 loop) was introduced into infectious molecular clones HIV-2KR and simian immunodeficiency virus mm239 (SIVmm239) by hybridization PCR, replacing the corresponding HIV-2 or SIV envelope cysteine loops with the HIV-1 coding sequence. The HIV-2 chimera (HIV-2KR-MNV3) was found to be capable of infecting a number of T-cell lymphoblastic cell lines as well as primary peripheral blood mononuclear cells. In contrast, the SIV chimera (SIV239MNV3) was not replication competent. Envelope produced by HIV-2KR-MNV3 but not the parental HIV-2KR was recognized by V3-specific and HIV-1-specific polyclonal antisera in radioimmunoprecipitation assays. HIV-2-specific antisera recognized both the chimeric and parental virus but not HIV-1MN. The chimeric HIV-2KR-MNV3 virus proved to be exquisitely susceptible to neutralization by HIV-1-specific and V3-specific antisera, suggesting the potential for use in animal models designed to test HIV-1 vaccine candidates which target the PND.  相似文献   

16.
Abstract. The oral susceptibility of 22 South African livestock associated Culicoides species to infection with bluetongue virus serotype 1 (BTV‐1) and its replication rate in C. imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae) over a range of different incubation periods and temperatures are reported. Field‐collected Culicoides were fed on sheep blood containing 7.5 log10TCID50/mL of BTV‐1, and then held at constant different temperatures. Virus replication was measured over time by assaying individual flies in BHK‐21 cells using a microtitration procedure. Regardless of the incubation temperatures (10, 15, 18, 23.5 and 30°C) the mean virus titre/midge, infection rates (IR) and the proportion of infected females with transmission potential (TP = virus titre/midge ≥ 3 log10 TCID50) were found to be significantly higher in C. bolitinos than in C. imicola. Results from days 4–10 post‐infection (dpi), at 15–30°C, shows that the mean IR and TP values in C. bolitinos ranged from 36.7 to 87.8%, and from 8.4 to 87.7%, respectively; in C. imicola the respective values were 11.0–13.7% and 0–46.8%. In both species the highest IR was recorded at 25°C and the highest TP at 30°C. The time required for the development of TP in C. bolitinos ranged from 2 dpi at 25°C to 8 dpi at 15°C. In C. imicola it ranged from 4 dpi at 30°C to 10 dpi at 23.5°C; no individuals with TP were detected at 15°C. There was no evidence of virus replication in flies held at 10°C. When, at various points of incubation, individual flies were transferred from 10°C to 23.5°C and then assayed 4–10 days later, virus was recovered from both species. The mean virus titres/midge, and proportion of individuals with TP and IR, were again significantly higher in C. bolitinos than in C. imicola. Also the infection prevalence in C. magnus Colaço was higher than in C. imicola. Low infection prevalences were found in C. bedfordi Ingram & Macfie, C. leucostictus Kieffer, C. pycnostictus Ingram & Macfie, C. gulbenkiani Caeiro and C. milnei Austen. BTV‐1 was not detected in 14 other Culicoides species tested; however, some of these were tested in limited numbers. The present study indicates a multivector potential for BTV transmission in South Africa. In C. imicola and C. bolitinos the replication rates are distinct and are significantly influenced by temperature. These findings are discussed in relation to the epidemiology of bluetongue in South Africa.  相似文献   

17.
18.
Human herpesvirus type 1 (HHV-1) is widely dispersed among the human population. Although infection is often asymptomatic in humans, nonhuman primates develop a severe and often fatal infection. In August 2006, 13 black-tufted marmosets (Callithrix penincillata) from a group of 14 presented with clinical apathy, anorexia, and ataxia. Physical examination revealed conjunctivitis, erosive or ulcerative lesions on the skin, and swollen lymph nodes. Of the 14 animals captured, 10 died. Grossly, ulcers and erosions were observed on the skin of face, nasal planum, lips, and oral mucosa. Histologically, superficial vesicular and erosive stomatitis with associated basophilic intranuclear inclusion bodies in the squamous epithelium were observed. Swabs from oral lesions and tissue samples from necropsied animals were positive for HHV-1 by nested polymerase chain reaction for eight animals.  相似文献   

19.
Monospecific polyclonal antisera raised against VP13/14, a major tegument protein of herpes simplex virus type 1 cross-reacted with structural equine herpesvirus 1 and 4 proteins of Mr 120,000 and 123,000, respectively; these proteins are identical in molecular weight to the corresponding glycoprotein 10 (gp10) of each virus. Using a combination of immune precipitation and Western immunoblotting techniques, we confirmed that anti-VP13/14 and a monoclonal antibody to gp10 reacted with the same protein. Sequence analysis of a lambda gt11 insert of equine herpesvirus 1 gp10 identified an open reading frame in equine herpesvirus 4 with which it showed strong homology; this open reading frame also shared homology with gene UL47 of herpes simplex virus type 1 and gene 11 of varicella-zoster virus. This showed that, in addition to immunological cross-reactivity, VP13/14 and gp10 have protein sequence homology; it also allowed identification of VP13/14 as the gene product of UL47.  相似文献   

20.
Late-stage CCR5 tropic human immunodeficiency virus type 1 (HIV-1) isolates (R5 HIV-1) can deplete nearly all CD4+ thymocytes from human thymus/liver grafts, despite the fact that fewer than 5% of these cells express CCR5. To resolve this paradox, we studied the replication and cytopathic effects (CPE) of late-stage R5 HIV-1 biological clones from two progressors and two long-term nonprogressors (LTNP) in fetal thymic organ culture (FTOC) with and without added cytokines. We found that R5 HIV-1 clones from progressors but not LTNP were cytopathic in untreated FTOC. Moreover, R5 HIV-1 clones from progressors replicated to higher levels than LTNP-derived R5 HIV-1 clones in this system. In contrast, when FTOC was maintained in the presence of interleukin 2 (IL-2), IL-4, and IL-7, both progressor and LTNP clones exhibited similar replication and CPE, which were equal to or greater than the levels achieved by progressor-derived R5 HIV-1 clones in untreated FTOC. This finding was likely due to IL-2-induced CCR5 expression on CD4+ thymocytes in FTOC. R5 HIV-1 clones showed greater pathogenesis for CCR5+ cells but also showed evidence of CPE on CCR5- cells. Furthermore, infection of FTOC by R5 HIV-1 induced IL-10 and transforming growth factor beta (TGF-beta) expression. Both IL-10 and TGF-beta in turn induced CCR5 expression in FTOC. Induction of CCR5 expression via cytokine induction by R5 HIV-1 infection of CCR5+ thymocytes likely permitted further viral replication in newly CCR5+ thymocytes. CCR5 expression, therefore, is a key determinant of pathogenesis of R5 HIV-1 in FTOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号