首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-conductance, Ca2+ activated K+ channels (SK channels) are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1) blockade of SK2 channels before the training impaired fear memory, whereas, 2) blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced.  相似文献   

2.
Understanding the complex array of genes, proteins and cells involved in learning and memory is a major challenge for neuroscientists. Using the genetically powerful model system, Drosophila melanogaster, and its well-studied courtship behavior, investigators have begun to delineate essential elements of associative and nonassociative behavioral plasticity. Advances in transgenic tools and developments in behavioral assays have increased the power of studying courtship learning in the fruit fly.  相似文献   

3.
We have evaluated the role of the Drosophila mushroom bodies (MBs) in courtship conditioning, in which experience with mated females causes males to reduce their courtship toward virgins (Siegel and Hall, 1979). Whereas previous studies indicated that MB ablation abolished learning in an olfactory conditioning paradigm (deBelle and Heisenberg, 1994), MB-ablated males were able to learn in the courtship paradigm. They resumed courting at naive levels within 30 min after training, however, while the courtship of control males remained depressed 1 hr after training. We also describe a novel courtship conditioning paradigm that established long-term memory, lasting 9 days. In MB-ablated males, memory dissipated completely within 1 day. Our results indicate that the MBs are not required for learning and immediate recall of courtship conditioning but are required for consolidation of short-term and long-term associative memories.  相似文献   

4.
BACKGROUND: It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS: By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS: We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.  相似文献   

5.
Courtship behavior in Drosophila has often been described as a classic innate behavioral repertoire, but more recently extensive plasticity has been described. In particular, prior exposure to acoustic signals of con‐ or heterspecific males can change courtship traits in both sexes that are liable to be important in reproductive isolation. However, it is unknown whether male courtship song itself is socially plastic. We examined courtship song plasticity of two species in the Drosophila melanogaster subgroup. Sexual isolation between the species is influenced by two male song traits, the interpulse interval (IPI) and sinesong frequency (SSF). Neither of these showed plasticity when males had prior experience of con‐ and heterospecific social partners. However, males of both species produced longer bursts of song during courtship when they were exposed to social partners (either con‐ or heterospecific) than when they were reared in isolation. D. melanogaster carrying mutations affecting short‐ or medium‐term memory showed a similar response to the social environment, not supporting a role for learning. Our results demonstrate that the amount of song a male produces during courtship is plastic depending on the social environment, which might reflect the advantage of being able to respond to variation in intrasexual competition, but that song structure itself is relatively inflexible, perhaps due to strong selection against hybridization.  相似文献   

6.
Small conductance (SK) channels are calcium-activated potassium channels that, when cloned in 1996, were thought solely to contribute to the afterhyperpolarisation that follows action potentials, and to control repetitive firing patterns of neurons. However, discoveries over the past few years have identified novel roles for SK channels in controlling dendritic excitability, synaptic transmission and synaptic plasticity. More recently, modulation of SK channel calcium sensitivity by casein kinase 2, and of SK channel trafficking by protein kinase A, have been demonstrated. This article will discuss recent findings regarding the function and modulation of SK channels in central neurons.  相似文献   

7.
Cellular and molecular mechanisms of memory: the LTP connection.   总被引:9,自引:0,他引:9  
Studies of the cellular and molecular mechanisms of memory formation have focused on the role of long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). A combination of genetic, electrophysiological and behavioral techniques have been used to examine the possibility that LTP is a cellular mechanism of memory storage in the mammalian brain. Although a definitive answer remains elusive, it is clear that in many cases manipulations that alter LTP alter memory, and training regimens that produce memory can produce LTP-like potentiation of synaptic transmission.  相似文献   

8.
9.
Daisuke Yamamoto  Soh Kohatsu 《Fly》2017,11(2):139-147
The fruitless (fru) gene in Drosophila has been proposed to play a master regulator role in the formation of neural circuitries for male courtship behavior, which is typically considered to be an innate behavior composed of a fixed action pattern as generated by the central pattern generator. However, recent studies have shed light on experience-dependent changes and sensory-input-guided plasticity in courtship behavior. For example, enhanced male-male courtship, a fru mutant “hallmark,” disappears when fru-mutant males are raised in isolation. The fact that neural fru expression is induced by neural activities in the adult invites the supposition that Fru as a chromatin regulator mediates experience-dependent epigenetic modification, which underlies the neural and behavioral plasticity.  相似文献   

10.
In male vertebrates the display of courtship behavior depends on the presence of testicular androgens. However, social experiences in adulthood can alter the hormonal dependence of courtship behavior in a variety of species, and we have previously proposed that these behavioral changes are linked to changes in neural metabolic capacity (cytochrome oxidase activity). Here we investigated the effects of prior social experience (housing with females vs housing in isolation) on the retention of courtship behavior following gonadectomy and on cytochrome oxidase (CO) activity in male little striped whiptail lizards, Cnemidophorus inornatus. In Experiment 1, we found that males that were previously housed with females (HWF males) continued to display courtship behavior longer after castration than males previously housed in isolation (ISOLATE males). This is similar to the behavioral plasticity found in rodents and cats. On the other hand, courtship behavior while gonadally intact was indistinguishable between HWF and ISOLATE males. Because all males were housed individually following castration, the difference is due to different social experiences prior to castration. In Experiment 2, we found that gonadally intact HWF males had significantly elevated CO activity in the preoptic area, amygdala, and anterior and ventromedial hypothalamic areas relative to intact ISOLATE males. No significant differences in metabolism were found in the lateral septum, lateral hypothalamus, and habenula or in hindlimb muscle, suggesting that the increase in metabolism is specific to brain nuclei involved in courtship behavior. Altogether, this demonstrates that elevations in metabolic capacity correlate with experience-dependent increases in robustness to castration.  相似文献   

11.
Although synaptic plasticity is widely regarded as the primary mechanism of memory [1], forms of nonsynaptic plasticity, such as increased somal or dendritic excitability or membrane potential depolarization, also have been implicated in learning in both vertebrate and invertebrate experimental systems [2], [3], [4], [5], [6] and [7]. Compared to synaptic plasticity, however, there is much less information available on the mechanisms of specific types of nonsynaptic plasticity involved in well-defined examples of behavioral memory. Recently, we have shown that learning-induced somal depolarization of an identified modulatory cell type (the cerebral giant cells, CGCs) of the snail Lymnaea stagnalis encodes information that enables the expression of long-term associative memory [8]. The Lymnaea CGCs therefore provide a highly suitable experimental system for investigating the ionic mechanisms of nonsynaptic plasticity that can be linked to behavioral learning. Based on a combined behavioral, electrophysiological, immunohistochemical, and computer simulation approach, here we show that an increase of a persistent sodium current of this neuron underlies its delayed and persistent depolarization after behavioral single-trial classical conditioning. Our findings provide new insights into how learning-induced membrane level changes are translated into a form of long-lasting neuronal plasticity already known to contribute to maintained adaptive modifications at the network and behavioral level [8].  相似文献   

12.
13.
Necrotic insults such as seizure are excitotoxic. Logically, membrane hyperpolarization by increasing outwardly conducting potassium channel currents should attenuate hyperexcitation and enhance neuron survival. Therefore, we overexpressed a small-conductance calcium-activated (SK2) or voltage-gated (Kv1.1) channel via viral vectors in cultured hippocampal neurons. We found that SK2 or Kv1.1 protected not only against kainate or glutamate excitotoxicity but also increased survival after sodium cyanide or staurosporine. In vivo overexpression of either channel in dentate gyrus reduced kainate-induced CA3 lesions. In hippocampal slices, the kainate-induced increase in granule cell excitability was reduced by overexpression of either channel, suggesting that these channels exert their protective effects during hyperexcitation. It is also important to understand any functional disturbances created by transgene overexpression alone. In the absence of insult, overexpression of Kv1.1, but not SK2, reduced baseline excitability in dentate gyrus granule cells. Furthermore, while no behavioral disturbances during spatial acquisition in the Morris water maze were observed with overexpression of either channel, animals overexpressing SK2, but not Kv1.1, exhibited a memory deficit post-training. This difference raises the possibility that the means by which these channel subtypes protect may differ. With further development, potassium channel vectors may be an effective pre-emptive strategy against necrotic insults.  相似文献   

14.
15.
Small‐conductance calcium‐activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA expression in myometrium from pregnant and non‐pregnant women. Myometrial biopsies were obtained from pregnant (n = 11) and non‐pregnant (n = 11) women. The expression of SK3 channels was assessed using immunohistochemistry and SK3 mRNA was determined by qRT‐PCR. In non‐pregnant myometrium SK3 immunoreactivity was observed in CD34 positive (CD34+) interstitial Cajal‐like cells (ICLC), now called telocytes. Although CD34+ cells were also present in pregnant myometrium, they lacked SK3 immunoreactivity. Furthermore, the immunohistochemical results showed that SK3 expression in vascular endothelium was similar between the two groups. CD117 immunoreactivity was only detected in small round cells that resemble mast cells. Compared to non‐pregnant myometrium we found significantly less SK3 mRNA in pregnant myometrium. We demonstrate that SK3 channels are localized solely in CD34+ cells and not in smooth muscle cells, and that the molecular expression of SK3 channels is higher in non‐pregnant compared to pregnant myometrium. On the basis of our previous study and the present findings, we propose that SK3 activators reduce contractility in human myometrium by modulating telocyte function. This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes.  相似文献   

16.
17.
A role for sleep in memory processes and neural plasticity has been suggested many times and in many different forms. However, we are far from a consensus on what this role might be and why it would be fulfilled preferentially by sleep. In this review, we distinguish between memory acquisition, consolidation, and maintenance, and we consider how sleep may specifically contribute to each of these phases. We also distinguish between declarative and nondeclarative memories and their relationships to different stages of sleep. Finally, we discuss whether different molecular and cellular aspects of neural plasticity may be associated preferentially with different behavioral states. A consideration of such molecular aspects could lead to more conclusive experiments concerning the relationship between sleep and plasticity.  相似文献   

18.
Activity-dependent synaptic plasticity is known to be important in learning and memory, persistent pain and drug addiction. Glutamate NMDA receptor activation stimulates several protein kinases, which then trigger biochemical cascades that lead to modifications in synaptic efficacy. Genetic and pharmacological techniques have been used to show a role for Ca2+/calmodulin-dependent kinase II (CaMKII) in synaptic plasticity and memory formation. However, it is not known if increasing CaMKII activity in forebrain areas affects behavioral responses to tissue injury. Using genetic and pharmacological techniques, we were able to temporally and spatially restrict the over expression of CaMKII in forebrain areas. Here we show that genetic overexpression of CaMKII in the mouse forebrain selectively inhibits tissue injury-induced behavioral sensitization, including allodynia and hyperalgesia, while behavioral responses to acute noxious stimuli remain intact. CaMKII overexpression also inhibited synaptic depression induced by a prolonged repetitive stimulation in the ACC, suggesting an important role for CaMKII in the regulation of cingulate neurons. Our results suggest that neuronal CaMKII activity in the forebrain plays a role in persistent pain.  相似文献   

19.
20.
The promyelocytic leukemia (PML) protein is a tumor suppressor factor mostly known by its involvement in acute promyelocytic leukemia (APL). Interestingly, recent studies have provided evidence that, in the central nervous system, PML is involved in neurogenesis. However, prospective studies of PML in brain are lacking. To further understand the role of PML in the mammalian brain, we studied plasticity and behavioral changes in PML knockout mice. If PML is involved in neurogenesis, and neurogenesis is an important process for proper brain development as well as learning and memory functions, we hypothesized that PML might have a role in plasticity and cognition. Behavioral studies demonstrated that PML knockout mice present abnormalities in conditioned learning and spatial memory, as determined by fear conditioning and Morris water maze tasks. Experiments to determine normal exploratory behavior interestingly revealed that PML knockout mice present reduced anxiety‐related responses as compared to control animals. This was confirmed when PML knockout mice spent more time in the open arms of an elevated plus‐maze, which is an indication of decreased anxiety. Additionally, impairments in hippocampus‐dependent learning were mirrored by altered long‐term plasticity at Schaffer collateral‐CA1 synapses. We now provide the first evidence for an important role of PML in the brain, indicating that PML might have a role in synaptic plasticity and associated behavioral processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号