首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
竺乐庆  张大兴  张真 《昆虫学报》2015,58(12):1331-1337
【目的】本研究旨在探索使用先进的计算机视觉技术实现对昆虫图像的自动分类方法。【方法】通过预处理对采集的昆虫标本图像去除背景,获得昆虫图像的前景蒙板,并由蒙板确定的轮廓计算出前景图像的最小包围盒,剪切出由最小包围盒确定的前景有效区域,然后对剪切得到的图像进行特征提取。首先提取颜色名特征,把原来的RGB(Red-Green-Blue)图像的像素值映射到11种颜色名空间,其值表示RGB值属于该颜色名的概率,每个颜色名平面划分成3×3像素大小的网格,用每格的概率均值作为网格中心点的描述子,最后用空阈金字塔直方图统计的方式形成颜色名视觉词袋特征;其次提取OpponentSIFT(Opponent Scale Invariant Feature Transform)特征,首先把RGB图像变换到对立色空间,对该空间每通道提取SIFT特征,最后用空域池化和直方图统计方法形成OpponentSIFT视觉词袋。将两种词袋特征串接后得到该昆虫图像的特征向量。使用昆虫图像样本训练集提取到的特征向量训练SVM(Support Vector Machine)分类器,使用这些训练得到的分类器即可实现对鳞翅目昆虫的分类识别。【结果】该方法在包含10种576个样本的昆虫图像数据库中进行了测试,取得了100%的识别正确率。【结论】试验结果证明基于颜色名和OpponentSIFT特征可以有效实现对鳞翅目昆虫图像的识别。  相似文献   

2.
Color-to-Grayscale: Does the Method Matter in Image Recognition?   总被引:2,自引:0,他引:2  
Kanan C  Cottrell GW 《PloS one》2012,7(1):e29740
  相似文献   

3.
4.
刘国成  张杨  黄建华  汤文亮 《昆虫学报》2015,58(12):1338-1343
【目的】叶螨(spider mite)是为害多种农作物的主要害虫,叶螨识别传统方法依靠肉眼,比较费时费力,为研究快速自动识别方法,引入计算机图像分析算法。【方法】该方法基于K-means聚类算法对田间作物上的叶螨图像进行分割与识别。【结果】对比传统RGB彩色分割方法,K-means聚类算法能够有效地对叶片上叶螨图像进行分割和识别。K-means聚类算法平均识别时间为3.56 s,平均识别准确率93.95%。识别时间 T 随图像总像素 Pi 的增加而增加。【结论】K-means聚类组合算法能够应用于叶螨图像分割与识别。  相似文献   

5.
The zebrafish has become an important vertebrate animal model for the study of developmental biology, functional genomics, and disease mechanisms. It is also being used for drug discovery. Computerized detection of blob objects has been one of the important tasks in quantitative phenotyping of zebrafish. We present a new automated method that is able to detect blob objects, such as nuclei or cells in microscopic zebrafish images. This method is composed of three key steps. The first step is to produce a diffused gradient vector field by a physical elastic deformable model. In the second step, the flux image is computed on the diffused gradient vector field. The third step performs thresholding and nonmaximum suppression based on the flux image. We report the validation and experimental results of this method using zebrafish image datasets from three independent research labs. Both sensitivity and specificity of this method are over 90%. This method is able to differentiate closely juxtaposed or connected blob objects, with high sensitivity and specificity in different situations. It is characterized by a good, consistent performance in blob object detection.  相似文献   

6.
Y Xu 《PloS one》2012,7(8):e43493
Pattern recognition techniques have been used to automatically recognize the objects, personal identities, predict the function of protein, the category of the cancer, identify lesion, perform product inspection, and so on. In this paper we propose a novel quaternion-based discriminant method. This method represents and classifies color images in a simple and mathematically tractable way. The proposed method is suitable for a large variety of real-world applications such as color face recognition and classification of the ground target shown in multispectrum remote images. This method first uses the quaternion number to denote the pixel in the color image and exploits a quaternion vector to represent the color image. This method then uses the linear discriminant analysis algorithm to transform the quaternion vector into a lower-dimensional quaternion vector and classifies it in this space. The experimental results show that the proposed method can obtain a very high accuracy for color face recognition.  相似文献   

7.
8.
A major challenge in personalized medicine is the lack of a standard way to define the functional significance of the numerous nonsynonymous, single nucleotide coding variants that are present in each human individual. To begin to address this problem, we have used pigmentation as a model polygenic trait, three common human polymorphisms thought to influence pigmentation, and the zebrafish as a model system. The approach is based on the rescue of embryonic zebrafish mutant phenotypes by “humanized” zebrafish orthologous mRNA. Two hypomorphic polymorphisms, L374F in SLC45A2, and A111T in SLC24A5, have been linked to lighter skin color in Europeans. The phenotypic effect of a second coding polymorphism in SLC45A2, E272K, is unclear. None of these polymorphisms had been tested in the context of a model organism. We have confirmed that zebrafish albino fish are mutant in slc45a2; wild-type slc45a2 mRNA rescued the albino mutant phenotype. Introduction of the L374F polymorphism into albino or the A111T polymorphism into slc24a5 (golden) abolished mRNA rescue of the respective mutant phenotypes, consistent with their known contributions to European skin color. In contrast, the E272K polymorphism had no effect on phenotypic rescue. The experimental conclusion that E272K is unlikely to affect pigmentation is consistent with a lack of correlation between this polymorphism and quantitatively measured skin color in 59 East Asian humans. A survey of mutations causing human oculocutaneous albinism yielded 257 missense mutations, 82% of which are theoretically testable in zebrafish. The developed approach may be extended to other model systems and may potentially contribute to our understanding the functional relationships between DNA sequence variation, human biology, and disease.  相似文献   

9.
Bird predation is one of the major concerns for fish culture in open ponds. A novel method for dispersing birds is the use of autonomous vehicles. Image recognition software can improve their efficiency. Several image processing techniques for recognition of birds have been tested. A series of morphological operations were implemented. We divided images into 3 types, Type 1, Type 2, and Type 3, based on the level of difficulty of recognizing birds. Type 1 images were clear; Type 2 images were medium clear, and Type 3 images were unclear. Local thresholding has been implemented using HSV (Hue, Saturation, and Value), GRAY, and RGB (Red, Green, and Blue) color models on all three sections of images and results were tabulated. Template matching using normal correlation and artificial neural networks (ANN) are the other methods that have been developed in this study in addition to image morphology. Template matching produced satisfactory results irrespective of the difficulty level of images, but artificial neural networks produced accuracies of 100, 60, and 50% on Type 1, Type 2, and Type 3 images, respectively. Correct classification rate can be increased by further training. Future research will focus on testing the recognition algorithms in natural or aquacultural settings on autonomous boats. Applications of such techniques to industrial, agricultural, or related areas are additional future possibilities.  相似文献   

10.
Funduscopy is one of the most commonly used diagnostic tools in the ophthalmic practice, allowing for a ready assessment of pathological changes in the retinal vasculature and the outer retina. This non-invasive technique has so far been rarely used in animal model for ophthalmic diseases, albeit its potential as a screening assay in genetic screens. The zebrafish (Danio rerio) is well suited for such genetic screens for ocular alterations. Therefore we developed funduscopy in adult zebrafish and employed it as a screening tool to find alterations in the anterior segment and the fundus of the eye of genetically modified adult animals.A stereomicroscope with coaxial reflected light illumination was used to obtain fundus color images of the zebrafish. In order to find lens and retinal alterations, a pilot screen of 299 families of the F3 generation of ENU-treated adult zebrafish was carried out.Images of the fundus of the eye and the anterior segment can be rapidly obtained and be used to identify alterations in genetically modified animals. A number of putative mutants with cataracts, defects in the cornea, eye pigmentation, ocular vessels and retina were identified. This easily implemented method can also be used to obtain fundus images from rodent retinas.In summary, we present funduscopy as a valuable tool to analyse ocular abnormalities in adult zebrafish and other small animal models. A proof of principle screen identified a number of putative mutants, making funduscopy based screens in zebrafish feasible.  相似文献   

11.
Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy generate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ultimately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data. A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis components, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular phenotypes were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the constitutively activated Rho protein Rac(V12). The performance of this approach was tested using a cellular database that contained more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells for further HCS-based gene function analysis.  相似文献   

12.
【目的】探究深度学习在草地贪夜蛾Spodoptera frugiperda成虫自动识别计数上的可行性,并评估模型的识别计数准确率,为害虫机器智能监测提供图像识别与计数方法。【方法】设计一种基于性诱的害虫图像监测装置,定时自动采集诱捕到的草地贪夜蛾成虫图像,结合采集船形诱捕器粘虫板上草地贪夜蛾成虫图像,构建数据集;应用YOLOv5深度学习目标检测模型进行特征学习,通过草地贪夜蛾原始图像、清除边缘残缺目标、增加相似检测目标(斜纹夜蛾成虫)、无检测目标负样本等不同处理的数据集进行模型训练,得到Yolov5s-A1, Yolov5s-A2, Yolov5s-AB, Yolov5s-ABC 4个模型,对比在不同遮挡程度梯度下的测试样本不同模型检测结果,用准确率(P)、召回率(R)、F1值、平均准确率(average precision, AP)和计数准确率(counting accuracy, CA)评估各模型的差异。【结果】通过原始图像集训练的模型Yolov5s-A1的识别准确率为87.37%,召回率为90.24%,F1值为88.78;清除边缘残缺目标图像集训练得到的模型Yolov5s-A2的识别准确率为93.15%,召回率为84.77%,F1值为88.76;增加斜纹夜蛾成虫样本图像训练的模型Yolov5s-AB的识别准确率为96.23%,召回率为91.85%,F1值为93.99;增加斜纹夜蛾成虫和无检测对象负样本训练的模型Yolov5s-ABC的识别准确率为94.76%,召回率为88.23%,F1值为91.38。4个模型的AP值从高到低排列如下:Yolov5s-AB>Yolov5s-ABC> Yolov5s-A2>Yolov5s-A1,其中Yolov5s-AB与Yolov5s-ABC结果相近;CA值从高到低排列如下:Yolov5s-AB>Yolov5s-ABC>Yolov5s-A2>Yolov5s-A1。【结论】结果表明本文提出的方法应用于控制条件下害虫图像监测设备及诱捕器粘虫板上草地贪夜蛾成虫的识别计数是可行的,深度学习技术对于草地贪夜蛾成虫的识别和计数是有效的。基于深度学习的草地贪夜蛾成虫自动识别与计数方法对虫体姿态变化、杂物干扰等有较好的鲁棒性,可从各种虫体姿态及破损虫体中自动统计出草地贪夜蛾成虫的数量,在害虫种群监测中具有广阔的应用前景。  相似文献   

13.
A biomolecular photoreceptor consisting of bacteriorhodopsin (bR)-based complex Langmuir–Blodgett (LB) films was developed for color image detection. By mimicking the functions of the pigments in retina of human visual system, biomolecules with photoelectric conversion function were chosen and used as constituents for an artificial photoreceptor. bR and flavin were deposited onto the patterned (9-pixelized) ITO glass by LB technique. A 9-pixel biomolecular photoreceptor was fabricated with a sandwich-type structure of ITO/LB films/electrolyte gel/Pt. Since each functional molecule shows its own response characteristic according to the light illumination in the visible region, the simplified knowledge-based algorithm for interpretation of the incident light wavelength (color) was proposed based on the basic rule describing the relationship between the photoelectric response characteristics and the incident light wavelength. When simple color images were projected onto the photoreceptor, the primary colors in visible light region, red, green, and blue were clearly recognized, and the projected color images were fairly well reproduced onto the color monitor by the proposed photoreceptor with the knowledge-based algorithm. It is concluded that the proposed device has a capability of recognizing the color images and can be used as a model system to simulate the information processing function of the human visual system.  相似文献   

14.
Sex determination in zebrafish by manual approaches according to current guidelines relies on human observation. These guidelines for sex recognition have proven to be subjective and highly labor‐intensive. To address this problem, we present a methodology to automatically classify the phenotypic sex using two machine learning methods: Deep Convolutional Neural Networks (DCNNs) based on the whole fish appearance and Support Vector Machine (SVM) based on caudal fin coloration. Machine learning techniques in sex classification provide potential efficiency with the advantage of automatization and robustness in the prediction process. Furthermore, since developmental plasticity can be influenced by environmental conditions, we have investigated the impact of elevated water temperature during embryogenesis on sex and sex‐related differences in color intensity of adult zebrafish. The estimated color intensity based on SVM was then applied to detect the association between coloration and body weight and length. Phenotypic sex classifications using machine learning methods resulted in a high degree of association with the real sex in nontreated animals. In temperature‐induced animals, DCNNs reached a performance of 100%, whereas 20% of males were misclassified using SVM due to a lower color intensity. Furthermore, a positive association between color intensity and body weight and length was observed in males. Our study demonstrates that high ambient temperature leads to a lower color intensity in male animals and a positive association of male caudal fin coloration with body weight and length, which appears to play a significant role in sexual attraction. The software developed for sex classification in this study is readily applicable to other species with sex‐linked visible phenotypic differences.  相似文献   

15.
The goal of image chromatic adaptation is to remove the effect of illumination and to obtain color data that reflects precisely the physical contents of the scene. We present in this paper an approach to image chromatic adaptation using Neural Networks (NN) with application for detecting--adapting human skin color. The NN is trained on randomly chosen color images containing human subject under various illuminating conditions, thereby enabling the model to dynamically adapt to the changing illumination conditions. The proposed network predicts directly the illuminant estimate in the image so as to adapt to human skin color. The comparison of our method with Gray World, White Patch and NN on White Patch methods for skin color stabilization is presented. The skin regions in the NN stabilized images are successfully detected using a computationally inexpensive thresholding operation. We also present results on detecting skin regions on a data set of test images. The results are promising and suggest a new approach for adapting human skin color using neural networks.  相似文献   

16.
17.
The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.  相似文献   

18.
Feature extraction is a crucial part of advanced image recognition systems. In this research, an autonomous detection device was designed and developed for insect pest detection to improve the ability of intelligent systems in order to annihilate harmful insect pests in agricultural crop fields. Device included a dark chamber, a CCD digital camera, a LDR lightening module and a personal computer. The proposed programme for precise insect pest detection was based on an image processing algorithm and artificial neural networks (ANNs). After image acquisition, the insect pests’ images were extracted from original images with Canny filtration. Afterwards, four morphological and three textural features from the obtained images were measured and normalised. Performance of ANN model was tested successfully for Beet armyworm (Spodoptera exigua) recognition in images using back-propagation supervised learning method and inspection data. Results showed that proposed system was able to identify S. exigua in the images from other species. Such this machine vision system can be used in autonomous field robots to achieve a modern farmer’s assistant.  相似文献   

19.
We present results from machine classification of melanoma biopsies sectioned and stained with hematoxylin/eosin (H&E) on tissue microarrays (TMA). The four stages of melanoma progression were represented by seven tissue types, including benign nevus, primary tumors with radial and vertical growth patterns (stage I) and four secondary metastatic tumors: subcutaneous (stage II), lymph node (stage III), gastrointestinal and soft tissue (stage IV). Our experiment setup comprised 14,208 image samples based on 164 TMA cores. In our experiments, we constructed an HE color space by digitally deconvolving the RGB images into separate H (hematoxylin) and E (eosin) channels. We also compared three different classifiers: Weighted Neighbor Distance (WND), Radial Basis Functions (RBF), and k-Nearest Neighbors (kNN). We found that the HE color space consistently outperformed other color spaces with all three classifiers, while the different classifiers did not have as large of an effect on accuracy. This showed that a more physiologically relevant representation of color can have a larger effect on correct image interpretation than downstream processing steps. We were able to correctly classify individual fields of view with an average of 96% accuracy when randomly splitting the dataset into training and test fields. We also obtained a classification accuracy of 100% when testing entire cores that were not previously used in training (four random trials with one test core for each of 7 classes, 28 tests total). Because each core corresponded to a different patient, this test more closely mimics a clinically relevant setting where new patients are evaluated based on training with previous cases. The analysis method used in this study contains no parameters or adjustments that are specific to melanoma morphology, suggesting it can be used for analyzing other tissues and phenotypes, as well as potentially different image modalities and contrast techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号