首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians'' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians'' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.  相似文献   

2.
Activity of the neurones with stable theta-bursts was recorded extracellularly in intact and hippocampectomized septum of unanaesthetized chronic rabbits during low-frequency (3-17 Hz) stimulation of horizontal limb of the diagonal band or the lateral septal nucleus. Gradual entrainment and phase-locking of the spontaneous theta-cycles occurred. Two types of entrainment were observed: "entrainment by pause", where interburst interval was reset by the stimuli; and "entrainment by burst", where bursts were time-locked to the stimuli. Such reorganization of the spontaneous bursts occurred in a narrow frequency range of stimulation (from 4 Hz up to 9-12 Hz), with the best resonance following in the range of "basic" theta frequencies of the awake rabbit (5-6 Hz). With stimulation beyond the theta-range three phenomena occurred: shift of the burst frequencies to higher or lower harmonics of stimulation frequencies; complex interactions of basic background frequency with the rhythm of stimulation ("beating"); escape from the influence of the stimuli with return to background theta-burst frequency.  相似文献   

3.
Beats are the physical phenomenon appearing when two oscillation processes of close frequencies are superimposed. In acoustics, there is also the concept of binaural beats, a subjective feeling of the listener when acoustic tones of slightly different frequencies are applied separately to each ear. Commercial products based on the effect of binaural beats enjoy steady popularity in the market of the modern technological tools for psycho- and physiotherapy. In particular, they are applied to improve sleep. But it is the objective evaluation of the physiologic effect of binaural beats on the sleep onset process that has very little evidence for support. This paper provides comparative analysis of the time to fall asleep determined by the onset of the second daytime sleep stage (sleep spindle appearance). The subjects listened to a monotonous sound of three similar kinds: a combination of binaural beats with pink noise, a similar sound with a combination of monaural beats, and a similar sound without any beat. Stimulation by the combination of binaural beats is shown to produce the least sleep onset time as compared to the similar sound containing monaural beats and to the similar sound without beats. Further investigation is required to obtain results that are more consistent.  相似文献   

4.
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.  相似文献   

5.
Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of the signal recorded from extracellular electrodes; yet these techniques are hard to apply to real data. To address the above issues, in this study we develop a method to compute fast and reliably the amount of TE from experimental time series of extracellular potentials. The method consisted in adapting efficiently the calculation of TE to analog signals and in providing appropriate sampling bias corrections. We then used this method to quantify the strength and significance of causal interaction between frequency bands of field potentials and spikes recorded from primary visual cortex of anaesthetized macaques, both during spontaneous activity and during binocular presentation of naturalistic color movies. Causal interactions between different frequency bands were prominent when considering the signals at a fine (ms) temporal resolution, and happened with a very short (ms-scale) delay. The interactions were much less prominent and significant at coarser temporal resolutions. At high temporal resolution, we found strong bidirectional causal interactions between gamma-band (40–100 Hz) and slower field potentials when considering signals recorded within a distance of 2 mm. The interactions involving gamma bands signals were stronger during movie presentation than in absence of stimuli, suggesting a strong role of the gamma cycle in processing naturalistic stimuli. Moreover, the phase of gamma oscillations was playing a stronger role than their amplitude in increasing causations with slower field potentials and spikes during stimulation. The dominant direction of causality was mainly found in the direction from MUA or gamma frequency band signals to lower frequency signals, suggesting that hierarchical correlations between lower and higher frequency cortical rhythms are originated by the faster rhythms.  相似文献   

6.
This study examines the binaural and frequency representation in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus, by using an ear-phone stimulation system. All 306 cortical neurons studied were excited by contralateral sound stimulation but they were either excited, inhibited or not affected by ipsilateral sound stimulation. These cortical neurons were columnarly organized according to their binaural and frequency-tuning properties. The excitation-excitation columns which occupy about 15% of the AC are mainly aggregated within an oval-shaped area of the central AC. The excitation-inhibition neurons and binaural neurons with mixed properties are distributed in the remaining 85% of the surrounding primary AC. Although the best frequency (BF) of these neurons shows a tendency to decrease from high to low along the anteroposterior axis of the primary AC, systematic variation in BF is not always consistent across the entire mapping area. In particular, BFs of cortical neurons isolated in the anterior AC vary quite unsystematically such that neurons with similar BFs are aggregated in isolated patches. Isofrequency and binaural columns are segregated into bands that intersect each other. Accepted: 13 August 1997  相似文献   

7.
Previous studies have demonstrated that despite its blindness, the subterranean blind mole rat (Spalax ehrenbergi) possesses a noticeable lateral geniculate nucleus and a typical cyto-architectural occipital cortex that are reciprocally connected. These two areas, as revealed by the metabolic tracer 2-deoxyglucose, are activated by auditory stimuli. Using single unit recordings, we show that about 57% of 325 cells located within the occipital cortex of anesthetized mole rats responded to at least one of the following auditory stimuli — white noise, pure tones, clicks, and amplitude modulated tones — with the latter two being the most effective. About 85% of cells driven by either contralateral or ipsilateral stimulation also responded to binaural stimulation; about 13% responded only to binaural stimulation; and 2% were driven exclusively by contralateral stimulation. Comparing responsiveness and response strength to these three modes of stimulation revealed a contralateral predominance. Mean latency (±SD) of ipsilateral and contralateral responses were 48.5±32.6 ms and 33.5±9.4 ms, respectively. Characteristic frequencies could be divided into two distinct subgroups ranging between 80 and 125 Hz and between 2,500 and 4,400 Hz, corresponding to the most intensive spectral components of the vibratory intraspecific communication signals and airborne vocalizations.Abbreviations BMF best modulation frequency - CF characteristic frequency - 2-DG 2-deoxyglucose - dLGN dorsal lateral geniculate nucleus - IC inferior colliculus - LGN lateral geniculate nucleus - OC occipital cortex - MTF modulation transfer function - SAM sinusoidally amplitude modulation - SC superior colliculus  相似文献   

8.
At pairing of isorhythmic stimuli beyond the theta-rhythm frequency limits (3 and 8 Hz), in power spectra of EEGs of the sensorimotor and visual neocortical areas of rabbits, the frequencies are present both of the theta-range and of the stimulation frequency, in the background activity as well as during the stimulation. Both rhythms are in reciprocal relations. The frequency of the theta-rhythm approaches the frequency divisible by that of the stimulation. Under the action of the conditioned stimulus, crosscorrelation coefficients (CC) between the potentials of the areas under study decrease in most cases in comparison to their background values. Combination of the conditioned stimulus with the unconditioned one, leads approximately in equal number of cases to an increase or decrease of CC. After elimination of the stimuli, in most cases CC increases. CC of the background activity does not increase in the course of paired stimuli presentation though a conditioned response is being formed. At presence of stimuli frequency fluctuations simultaneously in the potentials of both areas, the rise of coherence function at this frequency does not occurs always. Thus, the above spectral-correlation parameters of rabbit's cortical potentials differ from those which arise at pairing of continuous nonrhythmic stimuli. This difference is probably due to different characteristics of the stimuli presented.  相似文献   

9.
Repetitive transcranial magnetic stimulation of the motor cortex (rTMS) can be used to modify motor cortical excitability in human subjects. At stimulus intensities near to or above resting motor threshold, low-frequency rTMS (approximately 1 Hz) decreases motor cortical excitability, whereas high-frequency rTMS (5-20 Hz) can increase excitability. We investigated the effect of 10 min of intermittent rTMS on motor cortical excitability in normal subjects at two frequencies (2 or 6 Hz). Three low intensities of stimulation (70, 80, and 90% of active motor threshold) and sham stimulation were used. The number of stimuli were matched between conditions. Motor cortical excitability was investigated by measurement of the motor-evoked potential (MEP) evoked by single magnetic stimuli in the relaxed first dorsal interosseus muscle. The intensity of the single stimuli was set to evoke baseline MEPs of approximately 1 mV in amplitude. Both 2- and 6-Hz stimulation, at 80% of active motor threshold, reduced the magnitude of MEPs for approximately 30 min (P < 0.05). MEPs returned to baseline values after a weak voluntary contraction. Stimulation at 70 and 90% of active motor threshold and sham stimulation did not induce a significant group effect on MEP magnitude. However, the intersubject response to rTMS at 90% of active motor threshold was highly variable, with some subjects showing significant MEP facilitation and others inhibition. These results suggest that, at low stimulus intensities, the intensity of stimulation may be as important as frequency in determining the effect of rTMS on motor cortical excitability.  相似文献   

10.
闭环刺激是深部脑刺激(deep brain stimulation,DBS)的重要发展方向之一,有望用于治疗多种脑神经系统疾病.与常规开环的长时间持续刺激不同,闭环刺激通常采用短促的高频脉冲序列.而神经元对于高频刺激的响应存在暂态过程,在初期的短时间内会发生很大变化,从而影响闭环刺激的作用.为了研究这种暂态过程,在大鼠...  相似文献   

11.
Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles.  相似文献   

12.
It has been reported that human subjects exposed to electromagnetic fields exhibit changes in human EEG signals at the frequency of stimulation. The aim of the present study was to expose different parts of the brain to extremely low-frequency magnetic fields locally and investigate EEG power spectrum alters at the frequency of stimulation. EEG relative power spectrum were evaluated at 3, 5, 10, 17, and 45 Hz frequencies at T4, T3, F3, Cz, and F4 points, respectively, when these points were exposed to magnetic fields with similar frequencies and 100 μT intensity. The paired t-test results showed that power value of EEG did not alter significantly at the frequency of stimulation (P<0.05). Further, significant changes in different EEG bands caused by locally exposing to ELF-MF in different points of brain were observed. The changes in the EEG bands were not limited necessarily to the exposure point.  相似文献   

13.
It has been reported that human subjects exposed to electromagnetic fields exhibit changes in human EEG signals at the frequency of stimulation. The aim of the present study was to expose different parts of the brain to extremely low-frequency magnetic fields locally and investigate EEG power spectrum alters at the frequency of stimulation. EEG relative power spectrum were evaluated at 3, 5, 10, 17, and 45 Hz frequencies at T4, T3, F3, Cz, and F4 points, respectively, when these points were exposed to magnetic fields with similar frequencies and 100 μT intensity. The paired t-test results showed that power value of EEG did not alter significantly at the frequency of stimulation (P < 0.05). Further, significant changes in different EEG bands caused by locally exposing to ELF-MF in different points of brain were observed. The changes in the EEG bands were not limited necessarily to the exposure point.  相似文献   

14.
Contraction of canine ventricular trabeculae were recorded stimulation at a frequency of 0.5 Hz and after rest periods of 2 and 8 min to analyze the effect of the Ca channel agonist BAY k 8644, on sarcoplasmic reticular function. Short periods of rest interposed between steady trains of stimuli caused a potentiation of the postrest beat. This is believed to be due to the mobilization of activator Ca from the sarcoplasmic reticulum (SR). Racemic BAY k 8644 and its Ca channel agonist enantiomer, (-) BAY k 8644, both produced an increase in contraction in response to a steady train of stimuli but converted rest potentiation into rest depression. This has been interpreted as increased loss of Ca from the SR during diastole. Addition of Ca channel antagonists, (+) BAY k 8644, nitrendipine, or nifedipine, to reverse the agonistic effect of (-) and racemic BAY k 8644 on the Ca channel did not convert the rest depression into rest potentiation. In the presence of stimuli but converted rest potentiation into rest depression. This has been interpreted as increased loss of Ca from the SR during diastole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.  相似文献   

16.
A computerized system for precise stimulation and analysis of electroencephalographic (EEG) reactions to two simultaneously presented frequencies of sine-wave light (one constant, 13 Hz, and the other varying from 1 to 6 Hz and vice versa) was used to study the mechanisms of human brain reactivity to complex rhythmical stimulation. The frequencies were generated by computer and presented to the subjects by three different ways: as a result of their simple summation (additively), as a product of their multiplication (multiplicatively, amplitude modulation of constant frequency by the varying frequency), or by separate presentation to different eyes. The dynamics of electroencephalograms for different types of stimulation were compared. Under all three experimental conditions, the dynamics of EEG spectra has demonstrated the same general pattern of resonance activation, which was similar to that observed for the presented signals in the case of their amplitude modulation. Significant positive shifts in the functional state of subjects were observed as a result of stimulation. The results obtained show the leading role of the processes of amplitude modulation in the interaction of integrative, adaptive, and trace mechanisms of the brain functioning during human perception of complex rhythmical stimuli.  相似文献   

17.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

18.
Modulation of Hydra attenuata rhythmic activity. Photic stimulation.   总被引:1,自引:0,他引:1  
We investigated in Hydra attenuata the possibility of altering more or less permanently and in different environmental conditions, the frequency of Contraction Pulse Trains (CPT's) associated with the rhythmic spontaneous contraction activity, by repetitive light stimuli of variable duration, frequency and amplitude. The CPT's activity of various pieces of Hydra has been also investigated in indisturbed conditions and under stimulation. The following observations have been performed. 1. A transient effect, consisting of an increase or a decrease of CPT's frequency, occurs respectively after an abrupt decrease or increase of the light level. 2. If Hydra is stimulated by repetitive light pulses of 0.5-10 sec duration, at a frequency different from the CPT's average one, the CPT's frequency modifies; if the stimulation frequency is included in a range not too much up or below that of CPT's the new CPT's frequency equals exactly that of stimulation; close to this range the CPT's frequency is a multiple or submultiple of that of stimulation. 3. No habituation to such repetitive stimulation was found. 4. The phase relation between CPT's at the new frequency and light stimuli is a function of the difference between CPT's and stimulation frequencies. 5. Stimulation with repetition of light and darkness periods of some minutes duration induces activity only or mainly during darkness. 6. Modification of CPT's frequency by means of repetitive light stimulation [of the type mentioned either in 2) or 5)] has been observed also with hypostomal preparations. 7. With cessation of the light stimulation, the new CPT's frequency of the whole animal lasts in darkness for a time (10-85 min) that is about 5-10 times longer than that necessary to obtain CPT's syncronization with stimulation. 8. The influence of the light intensity level on transient CPT's frequency variation (see 1), CPT's inhibition and stimulation, promptness of entrainment, range of entrainability, phase relation between entrained CPT's and stimuli, retention time of entrained rhythm has been examined, together with the influence of the reversal of polarity of light transitions on CPT's inhibition and entrainment.  相似文献   

19.
Three types of experiment were carried out on anesthetized monkeys and cats. In the first, spike discharge activity of rapidly adapting (RA) SI neurons was recorded extracellularly during the application of different frequencies of vibrotactile stimulation to the receptive field (RF). The second used the same stimulus conditions to study the response of RA-I (RA) cutaneous mechanoreceptive afferents. The third used optical intrinsic signal (OIS) imaging and extracellular neurophysiological recording methods together, in the same sessions, to evaluate the relationship between the SI optical and RA neuron spike train responses to low- vs high-frequency stimulation of the same skin site. RA afferent entrainment was high at all frequencies of stimulation. In contrast, SI RA neuron entrainment was much lower on average, and was strongly frequency-dependent, declining in near-linear fashion from 6 to 200 Hz. Even at 200 Hz, however, unambiguous frequencyfollowing responses were present in the spike train activity of some SI RA neurons. These entrainment results support the "periodicity hypothesis" of Mountcastle et al. ( J Neurophysiol 32: 452-484, 1969) that the capacity to discriminate stimulus frequency over the range 5-50 Hz is attributable to the ability of SI RA pyramidal neurons to discharge action potentials in consistent temporal relationship to stimulus motion, and raise the possibility that perceptual frequency discriminative capacity at frequencies between 50 and 200 Hz might be accounted for in the same way. An increase in vibrotactile stimulus frequency within the range 6-200 Hz consistently resulted in an increase in RA afferent mean spike firing rate (M FR). SI RA neuron M FR also increased as frequency increased between 6 and 50 Hz, but declined as stimulus frequency was increased over the range 50-200 Hz. At stimulus frequencies > 100 Hz, and at positions in the RF other than the receptive field center (RF center ), SI RA neuron MFR declined sharply within 0.5-2s of stimulus onset and rebounded transiently upon stimulus termination. In contrast, when the stimulus was applied to the RF center, MFR increased with increasing frequency and tended to remain well maintained throughout the period of high-frequency stimulation. The evidence obtained in "combined" OIS imaging and extracellular microelectrode recording experiments suggests that SI RA neurons with an RF center that corresponds to the stimulated skin site occupy small foci within the much larger SI region activated by same-site cutaneous flutter stimulation, while for the RA neurons located elsewhere in the large SI region activated by a flutter stimulus, the stimulus site and RF center are different.  相似文献   

20.
When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid‐body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号