首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Anorchia is defined as the absence of testes in a 46,XY individual with a male phenotype. The cause is unknown.

Methods

We evaluated the clinical and biological presentation, and family histories of 26 boys with anorchia, and sequenced their SRY, NR5A1, INSL3, MAMLD1 genes and the T222P variant for LGR8.

Results

No patient had any associated congenital anomaly. At birth, testes were palpable bilaterally or unilaterally in 13 cases and not in 7; one patient presented with bilateral testicular torsion immediately after birth. The basal plasma concentrations of anti-Müllerian hormone (AMH, n = 15), inhibin B (n = 7) and testosterone (n = 19) were very low or undetectable in all the patients evaluated, as were the increases in testosterone after human chorionic gonadotropin (hCG, n = 12). The basal plasma concentrations of follicle stimulating hormone (FSH) were increased in 20/25, as was that of luteinising hormone in 10/22 cases. Family members of 7/26 cases had histories of primary ovarian failure in the mother (n = 2), or sister 46,XX, together with fetal malformations of the only boy with microphallus and secondary foot edema (n = 1), secondary infertility in the father (n = 2), or cryptorchidism in first cousins (n = 2). The sequences of all the genes studied were normal.

Conclusion

Undetectable plasma concentrations of AMH and inhibin B and an elevated plasma FSH, together with 46,XY complement are sufficient for diagnosis of anorchia. The hCG test is unnecessary. NR5A1 and other genes implicated in gonadal development and testicle descent were not mutated, which suggests that other genes involved in these developments contribute to the phenotypes.  相似文献   

2.

Background

Acetyl Coenzyme A carboxylase β (ACACB) is the rate-limiting enzyme in fatty acid oxidation, and continuous fatty acid oxidation in Acacb knock-out mice increases insulin sensitivity. Systematic human studies have not been performed to evaluate whether ACACB variants regulate gene expression and insulin sensitivity in skeletal muscle and adipose tissues. We sought to determine whether ACACB transcribed variants were associated with ACACB gene expression and insulin sensitivity in non-diabetic African American (AA) and European American (EA) adults.

Methods

ACACB transcribed single nucleotide polymorphisms (SNPs) were genotyped in 105 EAs and 46 AAs whose body mass index (BMI), lipid profiles and ACACB gene expression in subcutaneous adipose and skeletal muscle had been measured. Allelic expression imbalance (AEI) was assessed in lymphoblast cell lines from heterozygous subjects in an additional EA sample (n = 95). Selected SNPs were further examined for association with insulin sensitivity in a cohort of 417 EAs and 153 AAs.

Results

ACACB transcribed SNP rs2075260 (A/G) was associated with adipose ACACB messenger RNA expression in EAs and AAs (p = 3.8×10−5, dominant model in meta-analysis, Stouffer method), with the (A) allele representing lower gene expression in adipose and higher insulin sensitivity in EAs (p = 0.04). In EAs, adipose ACACB expression was negatively associated with age and sex-adjusted BMI (r = −0.35, p = 0.0002).

Conclusions

Common variants within the ACACB locus appear to regulate adipose gene expression in humans. Body fat (represented by BMI) may further regulate adipose ACACB gene expression in the EA population.  相似文献   

3.

Background

In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity.

Methodology

Mice received an intratracheal instillation of bleomycin (n = 8), elastase (0.25U elastase n = 9, 0.5U elastase n = 8) or saline control (n = 6 for fibrosis, n = 5 for emphysema). A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4). Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8). Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm.

Principal Findings

Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information.

Conclusions

We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This method is reproducible with low inherent measurement variability. We show that it is a reliable quantitative tool to investigate experimental lung fibrosis and emphysema in mice. Its non-invasive nature has the unique benefit to allow dynamic 4D evaluation of disease processes and therapeutic interventions.  相似文献   

4.

Background

Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients.

Methodology/Principal Findings

Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis.

Conclusion/Significance

The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD.  相似文献   

5.

Background

Studies suggest that micronutrients may modify the risk or delay progression of prostate cancer; however, the molecular mechanisms involved are poorly understood. We examined the effects of lycopene and fish oil on prostate gene expression in a double-blind placebo-controlled randomized clinical trial.

Methods

Eighty-four men with low risk prostate cancer were stratified based on self-reported dietary consumption of fish and tomatoes and then randomly assigned to a 3-month intervention of lycopene (n = 29) or fish oil (n = 27) supplementation or placebo (n = 28). Gene expression in morphologically normal prostate tissue was studied at baseline and at 3 months via cDNA microarray analysis. Differential gene expression and pathway analyses were performed to identify genes and pathways modulated by these micronutrients.

Results

Global gene expression analysis revealed no significant individual genes that were associated with high intake of fish or tomato at baseline or after 3 months of supplementation with lycopene or fish oil. However, exploratory pathway analyses of rank-ordered genes (based on p-values not corrected for multiple comparisons) revealed the modulation of androgen and estrogen metabolism in men who routinely consumed more fish (p = 0.029) and tomato (p = 0.008) compared to men who ate less. In addition, modulation of arachidonic acid metabolism (p = 0.01) was observed after 3 months of fish oil supplementation compared with the placebo group; and modulation of nuclear factor (erythroid derived-2) factor 2 or Nrf2-mediated oxidative stress response for either supplement versus placebo (fish oil: p = 0.01, lycopene: p = 0.001).

Conclusions

We did not detect significant individual genes associated with dietary intake and supplementation of lycopene and fish oil. However, exploratory analyses revealed candidate in vivo pathways that may be modulated by these micronutrients.

Trial Registration

ClinicalTrials.gov NCT00402285  相似文献   

6.

Objective

No optimal housekeeping genes (HKGs) have been identified for CD4+ T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR) assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4+ T cells from these asthmatics.

Methods

Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively) were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1), ribosomal protein, large, P0 (RPLP0), actin, beta (ACTB), cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 1 (PGK1), beta-2-microglobulin (B2M), glucuronidase, beta (GUSB) and ribosomal protein L13a (RPL13A), was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder.

Results

The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05).

Conclusions

B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4+ T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.  相似文献   

7.

Background

Unambiguous identification of nontypeable Haemophilus influenzae (NTHi) is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh); however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination.

Methodology/Principal Findings

Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22), Hh (n = 27) or equivocal (n = 11), were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3) and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction.

Conclusions/Significance

Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.  相似文献   

8.
Sun J  Li X  Feng H  Gu H  Blair T  Li J  Soriano S  Meng Y  Zhang F  Feng Q  Yang X 《PloS one》2011,6(9):e24529

Background

A characteristic feature of atherosclerosis is its diffuse involvement of arteries across the entire human body. Bone marrow cells (BMC) can be simultaneously transferred with therapeutic genes and magnetic resonance (MR) contrast agents prior to their transplantation. Via systemic transplantation, these dual-transferred BMCs can circulate through the entire body and thus function as vehicles to carry genes/contrast agents to multiple atherosclerosis. This study was to evaluate the feasibility of using in vivo MR imaging (MRI) to monitor BMC-mediated interleukin-10 (IL-10) gene therapy of atherosclerosis.

Methodology

For in vitro confirmation, donor mouse BMCs were transduced by IL-10/lentivirus, and then labeled with a T2-MR contrast agent (Feridex). For in vivo validation, atherosclerotic apoE−/− mice were intravenously transplanted with IL-10/Feridex-BMCs (Group I, n = 5) and Feridex-BMCs (Group II, n = 5), compared to controls without BMC transplantation (Group III, n = 5). The cell migration to aortic atherosclerotic lesions was monitored in vivo using 3.0T MRI with subsequent histology correlation. To evaluate the therapeutic effect of BMC-mediated IL-10 gene therapy, we statistically compared the normalized wall indexes (NWI) of ascending aortas amongst different mouse groups with various treatments.

Principal Findings

Of in vitro experiments, simultaneous IL-10 transduction and Feridex labeling of BMCs were successfully achieved, with high cell viability and cell labeling efficiency, as well as IL-10 expression efficiency (≥90%). Of in vivo experiments, MRI of animal groups I and II showed signal voids within the aortic walls due to Feridex-created artifacts from the migrated BMCs in the atherosclerotic plaques, which were confirmed by histology. Histological quantification showed that the mean NWI of group I was significantly lower than those of group II and group III (P<0.05).

Conclusion

This study has confirmed the possibility of using MRI to track, in vivo, IL-10/Feridex-BMCs recruited to atherosclerotic lesions, where IL-10 genes function to prevent the progression of atherosclerosis.  相似文献   

9.

Background

Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects.

Aim

We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake.

Methods and Findings

Participants, aged 20–60 years at baseline, came from five European countries. Cases (‘weight gainers’) were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a ‘weight gainer’ (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2×10−7).

Conclusions

We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.  相似文献   

10.

Objectives

To determine prospectively the causative pathogens of central nervous system (CNS) infections in patients admitted to a tertiary referral hospital in Hanoi, Vietnam.

Methods

From May 2007 to December 2008, cerebrospinal fluid (CSF) samples from 352 adults with suspected meningitis or encephalitis underwent routine testing, staining (Gram, Ziehl-Nielsen, India ink), bacterial culture and polymerase chain reaction targeting Neisseria meningitidis, Streptococcus pneumoniae, S. suis, Haemophilus influenzae type b, Herpes simplex virus (HSV), Varicella Zoster virus (VZV), enterovirus, and 16S ribosomal RNA. Blood cultures and clinically indicated radiology were also performed. Patients were classified as having confirmed or suspected bacterial (BM), tuberculous (TBM), cryptococcal (CRM), eosinophilic (EOM) meningitis, aseptic encephalitis/meningitis (AEM), neurocysticercosis and others.

Results

352 (male: 66%) patients were recruited: median age 34 years (range 13–85). 95/352 (27.3%) diagnoses were laboratory confirmed and one by cranial radiology: BM (n = 62), TBM (n = 9), AEM (n = 19), CRM (n = 5), and neurocysticercosis (n = 1, cranial radiology). S. suis predominated as the cause of BM [48/62 (77.4%)]; Listeria monocytogenese (n = 1), S. pasteurianus (n = 1) and N. meningitidis (n = 2) were infrequent. AEM viruses were: HSV (n = 12), VZV (n = 5) and enterovirus (n = 2). 5 patients had EOM. Of 262/352 (74.4%) patients with full clinical data, 209 (79.8%) were hospital referrals and 186 (71%) had been on antimicrobials. 21 (8%) patients died: TBM (15.2%), AEM (10%), and BM (2.8%).

Conclusions

Most infections lacked microbiological confirmation. S. suis was the most common cause of BM in this setting. Improved diagnostics are needed for meningoencephalitic syndromes to inform treatment and prevention strategies.  相似文献   

11.

Background

Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals.

Methodology

A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100).

Findings

The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II–III, type I–III or type I–II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers.

Conclusions

Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution.  相似文献   

12.

Context

Rapid cycling is a severe form of bipolar disorder with an increased rate of episodes that is particularly treatment-responsive to chronotherapy and stable sleep-wake cycles. We hypothesized that the P2RX7 gene would be affected by sleep deprivation and be implicated in rapid cycling.

Objectives

To assess whether P2RX7 expression is affected by total sleep deprivation and if variation in P2RX7 is associated with rapid cycling in bipolar patients.

Design

Gene expression analysis in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and case-case and case-control SNP/haplotype association analyses in patients.

Participants

Healthy volunteers at the sleep research center, University of California, Irvine Medical Center (UCIMC), USA (n = 8) and Swedish outpatients recruited from specialized psychiatric clinics for bipolar disorder, diagnosed with bipolar disorder type 1 (n = 569; rapid cycling: n = 121) and anonymous blood donor controls (n = 1,044).

Results

P2RX7 RNA levels were significantly increased during sleep deprivation in PBMCs from healthy volunteers (p = 2.3*10−9). The P2RX7 rs2230912 _A allele was more common (OR = 2.2, p = 0.002) and the ACGTTT haplotype in P2RX7 (rs1718119 to rs1621388) containing the protective rs2230912_G allele (OR = 0.45–0.49, p = 0.003–0.005) was less common, among rapid cycling cases compared to non-rapid cycling bipolar patients and blood donor controls.

Conclusions

Sleep deprivation increased P2RX7 expression in healthy persons and the putatively low-activity P2RX7 rs2230912 allele A variant was associated with rapid cycling in bipolar disorder. This supports earlier findings of P2RX7 associations to affective disorder and is in agreement with that particularly rapid cycling patients have a more vulnerable diurnal system.  相似文献   

13.

Introduction

Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.

Methods

Tag single nucleotide polymorphisms (SNPs) selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS) and the closely associated glutathione synthesis pathway (CTH, GGH, GSS) were genotyped for 777 renal cell carcinoma (RCC) cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163) with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P) tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.

Results

The strongest associations with RCC risk were observed for SLC19A1 (Pmin-P = 0.03) and MTHFR (Pmin-P = 0.13). A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785) was associated with a 37% increased risk (p = 0.02), and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.

Conclusions

To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings.  相似文献   

14.
15.
16.

Context

Randomized controlled trails have identified online cognitive behavioral therapy as an efficacious intervention in the management of common mental health disorders.

Objective

To assess the effectiveness of online CBT for different mental disorders in routine clinical practice.

Design

An uncontrolled before-after study, with measurements at baseline, posttest, 6-week follow-up, and 1-year follow-up.

Participants & Setting

1500 adult patients (female: 67%; mean age: 40 years) with a GP referral for psychotherapy were treated at a Dutch online mental health clinic for symptoms of depression (n = 413), panic disorder (n = 139), posttraumatic stress (n = 478), or burnout (n = 470).

Interventions

Manualized, web-based, therapist-assisted CBT, of which the efficacy was previously demonstrated in a series of controlled trials. Standardized duration of treatment varied from 5 weeks (online CBT for Posttraumatic stress) to 16 weeks (online CBT for Depression).

Main Outcome Measures

Validated self-report questionnaires of specific and general psychopathology, including the Beck Depression Inventory, the Impact of Event Scale, the Panic Disorder Severity Scale-Self Report, the Oldenburg Burnout Inventory, and the Depression Anxiety Stress Scales.

Results

Treatment adherence was 71% (n = 1071). Study attrition was 21% at posttest, 33% at 6-week FU and 65% at 1-year FU. Mixed-model repeated measures regression identified large short-term reductions in all measures of primary symptoms (d = 1.9±0.2 to d = 1.2±0.2; P<.001), which sustained up to one year after treatment. At posttest, rates of reliable improvement and recovery were 71% and 52% in the completer sample (full sample: 55%/40%). Patient satisfaction was high.

Conclusions

Results suggest that online therapist-assisted CBT may be as effective in routine practice as it is in clinical trials. Although pre-treatment withdrawal and long-term outcomes require further study, results warrant continued implementation of online CBT.  相似文献   

17.

Aims

A study of 222 candidate genes in type 2 diabetes reported association of variants in RAPGEF1, ENPP1, TP53, NRF1, SLC2A2, SLC2A4 and FOXC2 with type 2 diabetes in 4,805 Finnish individuals. We aimed to replicate these associations in a Danish case-control study and to substantiate any replicated associations in meta-analyses. Furthermore, we evaluated the impact on diabetes-related intermediate traits in a population-based sample of middle-aged Danes.

Methods

We genotyped nine lead variants in the seven genes in 4,973 glucose-tolerant and 3,612 type 2 diabetes Danish individuals. In meta-analyses we combined case-control data from the DIAGRAM+ Consortium (n = 47,117) and the present genotyping results. The quantitative trait studies involved 5,882 treatment-naive individuals from the Danish Inter99 study.

Results

None of the nine investigated variants were significantly associated with type 2 diabetes in the Danish samples. However, for all nine variants the estimate of increase in type 2 diabetes risk was observed for the same allele as previously reported. In a meta-analysis of published and online data including 55,521 Europeans the G-allele of rs1042522 in TP53 showed significant association with type 2 diabetes (OR = 1.06 95% CI 1.02–1.11, p = 0.0032). No substantial associations with diabetes-related intermediary phenotypes were found.

Conclusion

The G-allele of TP53 rs1042522 is associated with an increased prevalence of type 2 diabetes in a combined analysis of 55,521 Europeans.  相似文献   

18.

Background

Several common genetic and environmental disease mechanisms are important for the pathophysiology behind atopic dermatitis (AD). Filaggrin (FLG) loss-of-function is of great significance for barrier impairment in AD and ichthyosis vulgaris (IV), which is commonly associated with AD. The molecular background is, however, complex and various clusters of genes are altered, including inflammatory and epidermal-differentiation genes.

Objective

The objective was to study whether the functional and molecular alterations in AD and IV skin depend directly on FLG loss-of-function, and whether FLG genotype determines the type of downstream molecular pathway affected.

Methods and Findings

Patients with AD/IV (n = 43) and controls (n = 15) were recruited from two Swedish outpatient clinics and a Swedish AD family material with known FLG genotype. They were clinically examined and their medical history recorded using a standardized questionnaire. Blood samples and punch biopsies were taken and trans-epidermal water loss (TEWL) and skin pH was assessed with standard techniques. In addition to FLG genotyping, the STS gene was analyzed to exclude X-linked recessive ichthyosis (XLI). Microarrays and quantitative real-time PCR were used to compare differences in gene expression depending on FLG genotype. Several different signalling pathways were altered depending on FLG genotype in patients suffering from AD or AD/IV. Disease severity, TEWL and pH follow FLG deficiency in the skin; and the number of altered genes and pathways are correlated to FLG mRNA expression.

Conclusions

We emphasize further the role of FLG in skin-barrier integrity and the complex compensatory activation of signalling pathways. This involves inflammation, epidermal differentiation, lipid metabolism, cell signalling and adhesion in response to FLG-dependent skin-barrier dysfunction.  相似文献   

19.

Background

Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective disorder (BP) (n = 3 samples), to which cognitive impairment is linked.

Principal Findings

At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB) showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample.

Conclusion

Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号