首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.  相似文献   

2.
Th1 and Th17 T cells are often colocalized in pathological environments, yet Th1-derived IFN-gamma inhibits Th17 cell development in vitro. We explored the physiologic basis of this paradox in humans. In this study, we demonstrate increased the number of CD4(+) and CD8(+) IL-17(+) T cells in skin lesions of psoriasis. Furthermore, we show that myeloid APCs potently support induction of IL-17(+) T cells, and that this activity is greatly increased in psoriasis. We tested stimuli that might account for this activity. Th1 cells and IFN-gamma are increased in psoriatic blood and lesional skin. We show that IFN-gamma programs myeloid APCs to induce human IL-17(+) T cells via IL-1 and IL-23. IFN-gamma also stimulates APC production of CCL20, supporting migration of IL-17(+) T cells, and synergizes with IL-17 in the production of human beta-defensin 2, an antimicrobial and chemotactic protein highly overexpressed by psoriatic keratinocytes. This study reveals a novel mechanistic interaction between Th1 and IL-17(+) T cells, challenges the view that Th1 cells suppress Th17 development through IFN-gamma, and suggests that Th1 and IL-17(+) T cells may collaboratively contribute to human autoimmune diseases.  相似文献   

3.
4.
IL-17 and IL-23 are known to be absolutely central to psoriasis pathogenesis because drugs targeting either cytokine are highly effective treatments for this disease. The efficacy of these drugs has been attributed to blocking the function of IL-17-producing T cells and their IL-23-induced expansion. However, we demonstrate that mast cells and neutrophils, not T cells, are the predominant cell types that contain IL-17 in human skin. IL-17(+) mast cells and neutrophils are found at higher densities than IL-17(+) T cells in psoriasis lesions and frequently release IL-17 in the process of forming specialized structures called extracellular traps. Furthermore, we find that IL-23 and IL-1β can induce mast cell extracellular trap formation and degranulation of human mast cells. Release of IL-17 from innate immune cells may be central to the pathogenesis of psoriasis, representing a fundamental mechanism by which the IL-23-IL-17 axis mediates host defense and autoimmunity.  相似文献   

5.
Cytokines interleukin (IL)-12 and IL-23 are implicated in the pathogenesis of psoriasis. IL-12 causes differentiation of CD4+ T cells to interferon-gamma (IFN-gamma)-producing T helper 1 (Th1) cells, while IL-23 induces differentiation to IL-17-producing pathogenic Th17 cells. The effects of the monoclonal antibody to IL-12/23 p40 subunit (CNTO 1275) on IL-12 receptor (IL-12R) expression, markers associated with skin homing, activation, and cytokine secretion were investigated in vitro using human peripheral blood mononuclear cells (PBMCs) from healthy donors. PBMCs were activated in the presence or absence of recombinant human (rh) IL-12 or rhIL-23, with or without CNTO 1275. CNTO 1275 inhibited upregulation of CLA, IL-12R, IL-2Ralpha and CD40L expression and also inhibited IL-12- and IL-23-induced IFN-gamma, IL-17A, tumor necrosis factor (TNF)-alpha, IL-2, and IL-10 secretion. Thus, the therapeutic effect of CNTO 1275 may be attributed to the IL-12/23 neutralization, resulting in decreased expression of skin homing and activation markers, and IL-12- and IL-23-induced cytokine secretion.  相似文献   

6.
7.
IL-12p70 induced IFN-gamma is required to control Mycobacterium tuberculosis growth; however, in the absence of IL-12p70, an IL-12p40-dependent pathway mediates induction of IFN-gamma and initial bacteriostatic activity. IL-23 is an IL-12p40-dependent cytokine containing an IL-12p40 subunit covalently bound to a p19 subunit that is implicated in the induction of CD4 T cells associated with autoimmunity and inflammation. We show that in IL-23 p19-deficient mice, mycobacterial growth is controlled, and there is no diminution in either the number of IFN-gamma-producing Ag-specific CD4 T cells or local IFN-gamma mRNA expression. Conversely, there is an almost total loss of both IL-17-producing Ag-specific CD4 T cells and local production of IL-17 mRNA in these mice. The absence of IL-17 does not alter expression of the antimycobacterial genes, NO synthase 2 and LRG-47, and the absence of IL-23 or IL-17, both of which are implicated in mediating inflammation, fails to substantially affect the granulomatous response to M. tuberculosis infection of the lung. Despite this redundancy, IL-23 is required to provide a moderate level of protection in the absence of IL-12p70, and this protection correlates with a requirement for IL-23 in the IL-12p70-independent induction of Ag-specific, IFN-gamma-producing CD4 T cells. We also show that IL-23 is required for the induction of an IL-17-producing Ag-specific phenotype in naive CD4 T cells in vitro and that absence of IL-12p70 promotes an increase in the number of IL-17-producing Ag-specific CD4 T cells both in vitro and in vivo.  相似文献   

8.
IL-23 stimulates the differentiation and function of the Th17 subset of CD4(+) T cells and plays a critical role in chronic inflammation. The IL-23 receptor-encoding gene is also an inflammatory disease susceptibility gene. IL-23 shares a common subunit with IL-12, a T cell-dependent osteoclast formation inhibitor, and we found that IL-23 also dose-dependently inhibited osteoclastogenesis in a CD4(+) T lymphocyte-dependent manner. When sufficiently enriched, gammadelta T cells also mediated IL-23 inhibition. Like IL-12, IL-23 acted synergistically with IL-18 to block osteoclastogenesis but, unlike IL-12, IL-23 action depended on T cell GM-CSF production. IL-23 did not mediate IL-12 action although IL-12 induced its expression. Male mice lacking IL-23 (IL-23p19(-/-)) had approximately 30% lower bone mineral density and tibial trabecular bone mass (bone volume (BV)/total volume (TV)) than wild-type littermates at 12 wk and 40% lower BV/TV at 26 wk of age; male heterozygotes also had lower bone mass. Female IL-23p19(-/-) mice also had reduced BV/TV. IL-23p19(-/-) mice had no detectable osteoclast defect in trabecular bone but IL-23p19(-/-) had thinner growth plate hypertrophic and primary spongiosa zones (and, in females, less cartilage remnants) compared with wild type. This suggests increased osteoclast action at and below the growth plate, leading to reduced amounts of mature trabecular bone. Thus, IL-23 inhibits osteoclast formation indirectly via T cells in vitro. Under nonpathological conditions (unlike inflammatory conditions), IL-23 favors higher bone mass in long bones by limiting resorption of immature bone forming below the growth plate.  相似文献   

9.
Cytokine components of Th17 pathway play vital roles in human psoriasis. Although much is known about TCR αβ T cells in psoriasis, the role of unconventional T cells, including γδ T cells, is unclear. In this study, using an IL-23 skin injection model of psoriasiform dermatitis in mice, we demonstrate that IL-22, IL-17A, and the IL-23R were highly enriched in a population of CCR6(+), TCR γδ-low expressing (GDL) T cells that accumulated in the epidermis after IL-23 injections. GDL cells were distinct from resident TCR γδ-high, Vγ3(+),CCR6(-) T cells in the epidermis that did not change appreciably in numbers following IL-23 injection. Large numbers of CCR6(+) cells were detected at or above the level of the epidermal basement membrane by confocal microscopy 5 d after repeated IL-23 injections at the same time GDL cells increased in numbers in the epidermis. TCR δ-deficient mice (lacking γδ T cells) exhibited decreased ear swelling and downregulated expression of IL-22 and IL-17A in the epidermis following IL-23 injection. Our data suggest that a subset of γδ T cells play a critical role in IL-23-mediated psoriasiform dermatitis.  相似文献   

10.
IL-23 is a recently discovered heterodimeric cytokine that shares biological properties with proinflammatory cytokines. The biologically active heterodimer consists of p19 and the p40 subunit of IL-12. IL-23 has been shown to possess biological activities on T cells that are similar as well distinct from those of IL-12. We have constructed single-chain IL-23 and IL-12 fusion proteins (IL-23-Ig and IL-12-Ig) and have compared the two recombinant proteins for effects on murine dendritic cells (DC). Here we show that the IL-23-Ig can bind a significant proportion of splenic DC of both the CD8alpha(-) and CD8alpha(+) subtypes. Furthermore, IL-23and IL-12-Ig exert biological activities on DC that are only in part overlapping. While both proteins induce IL-12 production from DC, only IL-23-Ig can act directly on CD8alpha(+) DC to promote immunogenic presentation of an otherwise tolerogenic tumor peptide. In addition, the in vitro effects of IL-23-Ig did not appear to require IL-12Rbeta2 or to be mediated by the production of IL-12. These data may establish IL-23 as a novel cytokine with major effects on APC.  相似文献   

11.
C57BL/6 mice infected with the helminth Schistosoma mansoni develop small hepatic granulomas around parasite eggs, but concomitant immunization with soluble schistosome egg Ags (SEA) in CFA (SEA/CFA) causes marked exacerbation of the lesions in a Th1-dominated environment characterized by high levels of IFN-gamma. We explored the cause of the severe immunopathology by using IL-12p40(-/-) and IL-12p35(-/-) mice. SEA/CFA-immunized IL-12p40(-/-) mice, incapable of making IL-12 or IL-23, were completely resistant to high pathology, and their SEA-stimulated lymphoid cells failed to secrete significant IFN-gamma or IL-17. In contrast, SEA/CFA-immunized IL-12p35(-/-) mice, able to make IL-23 but not IL-12, developed severe lesions that correlated with high levels of IL-17, low IFN-gamma, and an expansion of activated CD4 T cells with a CD44(high)/CD62L(low) memory phenotype. In vivo administration of neutralizing anti-IL-17 mAb markedly inhibited hepatic granulomatous inflammation. Importantly, CBA mice, a naturally high pathology strain, also displayed elevated IL-17 levels comparable to those seen in the SEA/CFA-immunized BL/6 mice, and their lesions were similarly reduced by in vivo treatment with anti-IL-17. Our findings indicate that an IL-17-producing T cell population, likely driven by IL-23, significantly contributes to severe immunopathology in schistosomiasis.  相似文献   

12.
Psoriasis is a chronic inflammatory disorder of the skin characterized by epidermal hyperplasia and infiltration of leukocytes into the dermis and epidermis. T cell-derived cytokines, such as IFN-γ and IL-17A, play a major role in the psoriasis-associated epidermal hyperplasia, even though factors/mechanisms that regulate the production of these cytokines are not fully understood. We have recently shown that IL-21 is synthesized in excess in psoriatic skin lesions and causes epidermal hyperplasia when injected intradermally in mice. Moreover, in the human psoriasis SCID mouse model, neutralization of IL-21 reduces both skin thickening and expression of inflammatory molecules, thus supporting the pathogenic role of IL-21 in psoriasis. However, the basic mechanism by which IL-21 promotes skin pathology remains unknown. In this study, we show that CD4(+) cells accumulate early in the dermis of IL-21-treated mice and mediate the development of epidermal hyperplasia. Indeed, IL-21 fails to induce skin damage in RAG1-deficient mice and CD4(+) cell-depleted wild-type mice. The majority of CD4(+) cells infiltrating the dermis of IL-21-treated mice express IFN-γ and, to a lesser extent, IL-17A. Studies in cytokine knockout mice show that IFN-γ, but not IL-17A, is necessary for IL-21-induced epidermal hyperplasia. Finally, we demonstrate that IFN-γ-producing CD4(+) cells infiltrating the human psoriatic plaque express IL-21R, and abrogation of IL-21 signals reduces IFN-γ expression in cultures of psoriatic CD4(+) cells. Data indicate that IL-21 induces an IFN-γ-dependent pathogenic response in vivo, thus contributing to elucidate a mechanism by which IL-21 sustains skin-damaging inflammation.  相似文献   

13.
Preclinical and clinical studies conducted in the mid-1990s reported strong association and causality between the T-cell helper (T(H)) 1 inductor cytokine interleukin (IL)-12 and numerous immune-mediated disorders, which spurred the development of therapeutic agents targeting IL-12 function. One of the first to enter the clinic, ustekinumab, is a human monoclonal antibody (mAb) that binds to the p40 subunit of IL-12. Subsequent to the generation of ustekinumab, it was discovered that IL-23 also contains the p40 subunit. Thus, although ustekinumab was designed to target IL-12, it also modulates IL-23, a cytokine important to the development and/or maintenance of T(H)17 cells. Clinical observations established that IL-12/23p40 is integral to the pathologies of psoriasis, psoriatic arthritis and Crohn's disease. The molecular and cellular evaluations conducted in ustekinumab clinical programs have provided numerous insights into the pathologic processes of these disorders, illustrating how a novel molecular entity can contribute to our understanding of disease. The individual contributions of these cytokines to specific pathologies require investigation and clinical evaluation of the role of IL-12- and IL-23-specific inhibitors.  相似文献   

14.
Yago T  Nanke Y  Kawamoto M  Yamanaka H  Kotake S 《Cytokine》2012,59(2):252-257
Tacrolimus (FK506, Prograf?) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from na?ve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection.  相似文献   

15.
Although Crohn's disease has been traditionally considered to be Th1-mediated, the newly identified Th17 cells emerged recently as crucial participants. Th1/Th17 differentiation is controlled primarily by the IL-12 family of cytokines secreted by activated dendritic cells (DCs) and macrophages. IL-23 and IL-12/IL-27 have opposite effects, supporting the Th17 and Th1 phenotypes, respectively. We found that PGE(2), a major lipid mediator released in inflammatory conditions, shifts the IL-12/IL-23 balance in DCs in favor of IL-23, and propose that high levels of PGE(2) exacerbate the inflammatory process in inflammatory bowel disease through the IL-23-->IL-17 axis. We assessed the effects of PGE(2) on IL-12, IL-27, and IL-23 and found that PGE(2) promotes IL-23, inhibits IL-12 and IL-27 expression and release from stimulated DCs, and subsequently induces IL-17 production in activated T cells. The effects of PGE(2) are mediated through the EP2/EP4 receptors on DCs. In vivo, we assessed the effects of PGE analogs in an experimental model for inflammatory bowel disease and found that the exacerbation of clinical symptoms and histopathology correlated with an increase in IL-23 and IL-17, a decrease in IL-12p35 expression in colon and mesenteric lymph nodes, and a substantial increase in the number of infiltrating neutrophils and of CD4(+)IL-17(+) T cells in the colonic tissue. These studies suggest that high levels of PGE(2) exacerbate the inflammatory process through the preferential expression and release of DC-derived IL-23 and the subsequent support of the autoreactive/inflammatory Th17 phenotype.  相似文献   

16.
Herpes simplex virus (HSV) infection of the cornea culminates in an immunopathological lesion (stromal keratitis--SK) that impairs vision. This report shows that HSV infection results in IL-23 up-regulation, but if this response fails to occur, as was noted in p19-/- mice, the severity of lesions, their incidence and the level of viral induced angiogenesis were significantly increased compared to wild-type (WT) animals (p<0.05). The higher disease severity in p19-/- mice appeared to be the consequence of an increased IL-12 response that in turn led to the induction of higher numbers of IFN-gamma producing CD4(+)T cells, the principal orchestrators of SK. Our results indicate that the severity of HSV induced immunopathological lesions may be mainly the consequence of IL-12 driven Th1 T cell reactions rather than the action of IL-17 producing cells controlled by IL-23.  相似文献   

17.
The recently delineated role for IL-23 in enhancing Th-17 activity suggests that regulation of its expression is distinct from that of IL-12. We hypothesized that independent TLR-mediated pathways are involved in the regulation of IL-12 and IL-23 production by myeloid-derived dendritic cells (DCs). The TLR 2 ligand, lipoteichoic acid (LTA), the TLR 4 ligand, LPS, and the TLR 7/8 ligand, resimiquod (R848), induced production of IL-23 by DCs. None of these TLR ligands alone induced significant IL-12 production, except when combined with IFN-gamma or other TLR ligands. Notably, IL-23 production in response to single TLR ligands was inhibited by IL-4. DCs treated with single TLR agonists induced IL-17A production by allogeneic and Ag-specific memory CD4(+) T cells, an effect that was abrogated by IL-23 neutralization. Moreover, these DCs stimulated IL-17A production by tumor peptide-specific CD8(+) T cells. In contrast, DCs treated with dual signals induced naive and memory Th1 responses and enhanced the functional avidity of tumor-specific CD8(+) T cells. These results indicate that distinct microbial-derived stimuli are required to drive myeloid DC commitment to IL-12 or IL-23 production, thereby differentially polarizing T cell responses.  相似文献   

18.
Experimental studies in monkeys on the basis of ex vivo-generated, reinjected dendritic cells (DCs) allow investigations of primate DC biology in vivo. To study in vitro and in vivo properties of DCs with a reduced capacity to produce IL-12, we adapted findings obtained in vitro with human cells to the rhesus macaque model. Following exposure of immature monocyte-derived monkey DCs to the immunomodulating synthetic polypeptide glatiramer acetate (GA) and to dibutyryl-cAMP (d-cAMP; i.e., a cAMP enhancer that activates DCs but inhibits the induction of Th1 immune responses), the resulting DCs displayed a mature phenotype with enhanced Ag-specific T cell stimulatory function, notably also for memory Th1 cells. Phosphorylation of p38 MAPK was not induced in GA/d-cAMP-activated DCs. Accordingly, these cells secreted significantly less IL-12p40 (p < or = 0.001) than did cytokine-activated cells. However, upon restimulation with rhesus macaque CD154, GA/d-cAMP-activated DCs produced IL-12p40/IL-23. Additionally, DCs activated by proinflammatory cytokines following protocols for the generation of cells used in clinical studies secreted significantly more IL-23 upon CD154 restimulation than following prior activation. Two days after intradermal injection, GA/d-cAMP-activated fluorescence-labeled DCs were detected in the T cell areas of draining lymph nodes. When similarly injected, GA/d-cAMP as well as cytokine-activated protein-loaded DCs induced comparable Th immune responses characterized by secretion of IFN-gamma, TNF, and IL-17, and transiently expanded FOXP3(+) regulatory T cells. Reactivation of primate DCs through CD154 considerably influences their immmunostimulatory properties. This may have a substantial impact on the development of innovative vaccine approaches.  相似文献   

19.
IL-12 was thought to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. However, we have recently found that IL-12 responsiveness, via IL-12Rbeta2, is not required in the induction of EAE. To determine the role of IL-12Rbeta1, a key subunit for the responsiveness to both IL-12 and IL-23, in the development of autoimmune diseases, we studied EAE in mice deficient in this subunit of IL-12R. IL-12Rbeta1(-/-) mice are completely resistant to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with an autoantigen-specific Th2 response. To study the mechanism underlying this Th2 bias, we cocultured purified CD4(+) T cells and APCs of MOG-immunized mice. We demonstrate that IL-12Rbeta1(-/-) APCs drive CD4(+) T cells of both wild-type and IL-12Rbeta1(-/-) mice to an Ag-induced Th2 phenotype, whereas wild-type APCs drive these CD4(+) T cells toward a Th1 type. IL-12Rbeta1(-/-) CD4(+) T cells, in turn, appear to exert an immunoregulatory effect on the capacity of wild-type APCs to produce IFN-gamma and TNF-alpha. Furthermore, decreased levels of IL-12p40, p35, and IL-23p19 mRNA expression were found in IL-12Rbeta1(-/-) APCs, indicating an autocrine pathway of IL-12/IL-23 via IL-12Rbeta1. IL-18 production and IL-18Ralpha expression are also significantly decreased in IL-12Rbeta1(-/-) mice immunized with MOG. We conclude that in the absence of IL-12Rbeta1, APCs play a prominent regulatory role in the induction of autoantigen-specific Th2 cells.  相似文献   

20.
Therapeutic modulation of psoriasis with targeted immunosuppressive agents defines inflammatory genes associated with disease activity and may be extrapolated to a wide range of autoimmune diseases. Cyclosporine A (CSA) is considered a "gold standard" therapy for moderate-to-severe psoriasis. We conducted a clinical trial with CSA and analyzed the treatment outcome in blood and skin of 11 responding patients. In the skin, as expected, CSA modulated genes from activated T cells and the "type 1" pathway (p40, IFN-gamma, and STAT-1-regulated genes). However, CSA also modulated genes from the newly described Th17 pathway (IL-17, IL-22, and downstream genes S100A12, DEFB-2, IL-1beta, SEPRINB3, LCN2, and CCL20). CSA also affected dendritic cells, reducing TNF and inducible NO synthase (products of inflammatory TNF- and inducible NO synthase-producing dendritic cells), CD83, and IL-23p19. We detected 220 early response genes (day 14 posttreatment) that were down-regulated by CSA. We classified >95% into proinflammatory or skin resident cells. More myeloid-derived than activated T cell genes were modulated by CSA (54 myeloid genes compared with 11 lymphocyte genes), supporting the hypothesis that myeloid derived genes contribute to pathogenic inflammation in psoriasis. In circulating mononuclear leukocytes, in stark contrast, no inflammatory gene activity was detected. Thus, we have constructed a genomic signature of successful treatment of psoriasis which may serve as a reference to guide development of other new therapies. In addition, these data also identify new gene targets for therapeutic modulation and may be applied to wide range of autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号