首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we report the cloning of the rat cGMP-specific phosphodiesterase type 9 (PDE9A) and its localization in rat and mouse brain by non-radioactive in situ hybridization. Rat PDE9A was 97.6% identical to mouse PDE9A1 and showed 92.1% similarity on the amino acid level to the human homologue. PDE9A mRNA was widely distributed throughout the rat and mouse brain, with the highest expression observed in cerebellar Purkinje cells. Furthermore, strong staining was detected in areas such as cortical layer V, olfactory tubercle, caudate putamen and hippocampal pyramidal and granule cells. Comparison of PDE9A mRNA expression by double staining with the cellular markers NeuN and glial fibrillary acidic protein demonstrated that PDE9A expression was mainly detected in neurons and in a subpopulation of astrocytes. Using cGMP-immunocytochemistry, the localization of cGMP was investigated in the cerebellum in which the highest PDE9 expression was demonstrated. Strong cGMP immunoreactivity was detected in the molecular layer in the presence of the non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). After treatment with soluble guanylyl cyclase activators the granular layer also showed cGMP staining, whereas no clear immunostaining was detected in Purkinje cells under all conditions investigated, which might be due to the presence of the IBMX-insensitive PDE9A in these cells. The present findings indicate that PDE9A is highly conserved between species and is widely distributed throughout the rodent brain. PDE9A is probably involved in maintenance of low cGMP levels in cells and might play an important role in a variety of brain functions involving cGMP-mediated signal transduction.  相似文献   

2.
The polypyrimidine tract binding protein (PTB) and its recently discovered homologue brain-enriched PTB (brPTB) are RNA binding proteins involved in the control of alternative splicing. We have characterized expression patterns of the PTB and brPTB in course of mouse brain development, using mRNA in situ hybridization. PTB is expressed in choroid plexi and ependyma at all the stages of development and temporarily in the mantle layer of migrating neuroblasts of fore-, mid- and hindbrain and in the external granular layer of cerebellum. In the neurons of adult mouse cerebrum and cerebellum expression of PTB is undetectable. In contrast to this, brPTB is expressed ubiquitously in neuroblasts of various parts of embryonic brain and in the differentiated neurons of postnatal cerebrum and cerebellum. brPTB mRNA is not observed in choroid plexi and ependymal layer. Thus, in the embryonic brain expression patterns of PTB and brPTB overlap, but in the course of brain development the patterns become complementary to each other.  相似文献   

3.
Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. After expression in the embryonic period, Notch2 continues to be expressed postnatally in the specific regions in the rodent brain. Here, we examined Notch2 expression in the postnatal mouse brain using lacZ knockin animals at the Notch2 locus. Notch2 expression was observed in the developing cerebellum and hippocampus, characteristic regions where neurogenesis persists after birth. Double staining of sections revealed that Notch2 was expressed by Bergmann glia in the cerebellum, radial glia in the hippocampus, and some astrocytes in both regions. Notch2 expression by glial cells was clearly confirmed in dissociated cell cultures. Interestingly, neocortical glia, many of which did not express Notch2 in vivo, did express Notch2 in a dissociated culture condition. The triple staining of dissociated cell cultures revealed that stronger Notch2 expression correlated with the immature type of glial gene expressions: stronger vimentin and weaker glial fibrillary acidic protein expressions. In addition, Notch2 expression correlated with the incorporation of bromodeoxyuridine both in vivo and in vitro. Thus, these findings demonstrate that Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain, and that its expression negatively correlates with glial differentiation, proposing its novel function as a negative regulator of glial differentiation in mammalian brain development.  相似文献   

4.
5.
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.  相似文献   

6.
The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and is critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood.  相似文献   

7.
Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.  相似文献   

8.
Embryonic neurons are born in the ventricular zone of the brain, but subsequently migrate to new destinations to reach appropriate targets. Deciphering the molecular signals that cooperatively guide neuronal migration in the embryonic brain is therefore important to understand how the complex neural networks form which later support postnatal life. Facial branchiomotor (FBM) neurons in the mouse embryo hindbrain migrate from rhombomere (r) 4 caudally to form the paired facial nuclei in the r6-derived region of the hindbrain. Here we provide a detailed protocol for wholemount ex vivo culture of mouse embryo hindbrains suitable to investigate the signaling pathways that regulate FBM migration. In this method, hindbrains of E11.5 mouse embryos are dissected and cultured in an open book preparation on cell culture inserts for 24 hr. During this time, FBM neurons migrate caudally towards r6 and can be exposed to function-blocking antibodies and small molecules in the culture media or heparin beads loaded with recombinant proteins to examine roles for signaling pathways implicated in guiding neuronal migration.  相似文献   

9.
Differential expression of disialic acids in the cerebellum of senile mice   总被引:1,自引:0,他引:1  
It is known that disialic acids (diSia) are present in the mammalian brain. However, the precise anatomical distribution and the chronology of its expression along life are not well studied yet. It is accepted that the transfer of diSia in the brain is mediated mainly by the enzyme ST8Sia III (α2,8-sialyltransferase III). We studied the expression of diSia glycoepitopes and of the ST8Sia III gene in different structures of the mouse brain at different postnatal stages by immunohistochemistry and real-time polymerase chain reaction, respectively. C57BL/6 mice of different stages were used. Samples of hippocampus, olfactory bulb, cortex and cerebellum were processed for studies of molecular biology and immunohistochemistry. Histological analysis revealed an important decrease in diSia labeling in the senile cerebellum compared with other structures and stages (P???0.001). In concordance with these results, a significant decrease in ST8Sia III gene expression was found in the cerebellum of senile animals (P?相似文献   

10.
Kiaa0319L is a novel protein encoded by a recently discovered gene KIAA0319-like(L) that may be associated with reading disability. Little is known about the characteristics of this protein and its distribution in the brain. We investigated here expression of this protein in adult mice, using an antibody specific for human and rodent Kiaa0319L. In the brain, Kiaa0319L was localized strongly in the olfactory bulb, and strong expression was found in other regions, including hippocampus, cerebellum, diencephalon and the cerebral cortex. Immunohistochemistry confirmed expression in these brain regions, and showed further that the protein was expressed preferentially in neurons in layer IV and VI of the neocortex, CA1 and CA2 subfields of the hippocampus and a subpopulation of neurons in CA3 and dentate gyrus. Furthermore, the protein was confined to dendrites of CA1 neurons in the stratum radiatum, but not those in the stratum oriens, and in astrocytes within the hippocampus. In the cerebellum, the protein was observed in the molecular layer and a fraction of Purkinje neurons. These findings confirmed expression of Kiaa0319L in brain regions that are involved in reading performance, supporting its possible involvement in reading disability. The specific patterns of localization in the neocortex, hippocampus and cerebellum suggest further that this protein may be related to other biological processes in a subpopulation of neurons within these regions, eg. formation and maintenance of polarity in the neuron.  相似文献   

11.
目的研究adam10基因在成年小鼠中枢神经系统表达的脑区分布特点以及细胞类型。方法构建小鼠源性adam10 cRNA探针,通过原位杂交技术,观察adam10 mRNA在成年小鼠中枢神经系统分布特点,并在原位杂交后进行免疫组织化学染色,把adam10原位杂交信号和神经元、星形胶质细胞特异性细胞标记物进行双标,观察adam10基因表达的细胞类型。结果 Adam10基因在成年小鼠大脑皮层、海马、丘脑和小脑中表达,原位杂交后进行免疫组织化学染色结果显示adam10原位杂交阳性信号主要和神经元标记物NeuN共标,而和星形胶质细胞标记物GFAP不共标。结论本研究证实了在成年小鼠中枢神经系统中adam10基因在大脑皮层、海马、丘脑和小脑中都有表达;并且首次明确了大脑中ad-am10基因主要在神经元中表达,在星形胶质细胞中不表达,小脑中主要在小脑颗粒细胞和蒲肯野细胞中表达。  相似文献   

12.
13.
Large-scale mouse mutagenesis experiments now under way require appropriate screening methods. An important class of potential mutants comprises those with defects in the development of normal cerebellar patterning. Cerebellar defects are likely to be identified often because they typically result in ataxia. Immunohistochemistry (IHC) is commonly used to reveal cerebellar organization. In particular, the antigen zebrin II (=aldolase C), expressed by stripes of Purkinje cells, has been valuable in revealing cerebellar pattern abnormalities. The development of whole-mount procedures in Drosophila, chick, and Xenopus embryos allows complex patterns to be studied in situ while preserving the integrity of the structure. By combining procedures originally designed for embryonic and early postnatal tissue analyses, we have developed a whole-mount IHC protocol using anti-zebrin II, which reveals the complex topography of Purkinje cells in the adult mouse cerebellum. Furthermore, the procedure is effective with a number of other antigens and works well on both perfusion-fixed and immersion-fixed tissue. By use of this approach, normal adult murine cerebellar topography and patterning defects caused by mutation can be studied without the need for three-dimensional reconstruction.  相似文献   

14.
目的探讨生长休止特定蛋白7(Gas7)在大鼠小脑中的表达定位。方法应用Gas7抗血清,对大鼠小脑组织切片进行免疫组织化学染色。结果在小脑皮质分子层可见大量的Gas7阳性神经纤维;蒲氏细胞层中,Gas7主要表达在神经元胞膜和部分胞质处;颗粒层中可见Gas7阳性神经纤维。结论Gas7主要在小脑神经元的定位特征可能与Gas7促进神经元和神经突起发育的调节功能有关。  相似文献   

15.
Abstract— In mouse cerebellum, in vivo. cyclic GMP levels are 7 pmol/mg protein in the vermis and 40% lower in the hemispheres, whereas cyclic AMP levels are 7 9 pmol/mg protein in both regions. In the vermis. most of the cyclic GMP is contained in the molecular layer; cyclic AMP levels are highest in the granular layer. Amphetamine, harmaline. pentylenetetrazol and physical shaking elevate, and diazepam and reserpine depress levels of cyclic GMP in both vermis and hemispheres. Oxotremorine and atropine, respectively, increase and decrease cyclic GMP levels only in vermis. Regardless of the agent used, most of the change (67 89%) in cyclic GMP levels occurs in the molecular layer of the vermis; the remainder occurs in the granular layer. Of the drugs tested, only pentylenetetrazol affects cyclic AMP levels, and this drug increases cyclic AMP levels in both vermis and hemispheres and causes equal elevations in the molecular and granular layers of the vermis. In incubated slices of mouse cerebellum, none of the drugs produces changes in cyclic nucleotide levels which are similar to those in vivo. These data indicate that many drugs and conditions that alter cyclic GMP levels in cerebellum act via a common, but indirect, process. We suggest that cyclic GMP levels in cerebellum are regulated by the activity of both the climbing fiber and mossy fiber cerebellar afferent systems. Increased activity in these afferent pathways causes elevation of cyclic GMP levels in Purkinje cells and perhaps in other cells; decreased activity leads to depressed cyclic GMP levels.  相似文献   

16.
Schuldiner O  Shor S  Benvenisty N 《Gene》2002,285(1-2):91-99
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by the expansion of a polyglutamine tract in the protein ataxin-7, a protein of unknown function. In order to analyze the expression pattern of wild type ataxin-7 in detail, the murine SCA7 gene homolog was cloned and the expression pattern in mice analyzed. The SCA7 mouse and human gene exhibit a high degree of identity at both DNA (88.2%) and protein (88.7%) level. The CAG repeat region, known to be polymorphic in man, is conserved in mouse but contained only five repeats in all mouse strains analyzed. The arrestin homology domain and the nuclear localization signal found in human ataxin-7 is also conserved in the murine homolog. Expression of ataxin-7 was detected during mouse embryonic development and in all adult mouse tissues examined by northern and western blots. In brain, immunohistological staining revealed an ataxin-7 expression pattern similar to that in human, with ataxin-7 expression in cerebellum, several brainstem nuclei, cerebral cortex and hippocampus. Our data show high conservation of ataxin-7 both structurally and at the level of expression, suggesting a conserved role for the protein in mice and humans.  相似文献   

17.
PrP(c) (cellular prion protein) and Doppel are antagonizing proteins, respectively neuroprotective and neurotoxic. Evidence for Doppel neurotoxicity came from PrP(c)-deficient (Prnp(0/0)) mouse lines developing late onset Purkinje-cell degeneration caused by Doppel overexpression in brain. To address the molecular underpinnings of this cell-type specificity, we generated Doppel N-terminal-specific antibodies and started to examine the spatio-temporal expression of Doppel protein species in Ngsk Prnp(0/0) brain. Although Doppel overexpression is ubiquitous, Western analyses of normal and deglycosylated protein extracts revealed cerebellar patterns distinct from the rest of the brain, supporting the idea that neurotoxicity might be linked to a particular Doppel species pattern. Furthermore, our newly raised antibodies allowed the first Doppel immunohistochemical analyses in brain, showing a distribution in Prnp(0/0) cerebellum similar to PrP(c) in wild type.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号