首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine if augmenting podocyte injury promotes the development of advanced diabetic nephropathy (DN), we created mice that expressed the enzyme cytosine deaminase (CD) specifically in podocytes of diabetic Akita mice (Akita-CD mice). In these mice, treatment with the prodrug 5-flucytosine (5-FC) causes podocyte injury as a result of conversion to the toxic metabolite 5-fluorouracil (5-FU). We found that treatment of 4–5 week old Akita mice with 5-FC for 5 days caused robust albuminuria at 16 and 20 weeks of age compared to 5-FC treated Akita controls, which do not express CD (Akita CTLs). By 20 weeks of age, there was a significant increase in mesangial expansion in Akita-CD mice compared to Akita CTLs, which was associated with a variable increase in glomerular basement membrane (GBM) width and interstitial fibrosis. At 20 weeks of age, podocyte number was similarly reduced in both groups of Akita mice, and was inversely correlated with the albuminuria and mesangial expansion. Thus, enhancing podocyte injury early in the disease process promotes the development of prominent mesangial expansion, interstitial fibrosis, increased GBM thickness and robust albuminuria. These data suggest that podocytes play a key role in the development of advanced features of diabetic kidney disease.  相似文献   

2.
Nephrin, the key molecule of the glomerular slit diaphragm, is expressed on the surface of podocytes and is critical in preventing albuminuria. In diabetes, hyperglycemia leads to the loss of surface expression of nephrin and causes albuminuria. Here, we report a mechanism that can explain this phenomenon: hyperglycemia directly enhances the rate of nephrin endocytosis via regulation of the β-arrestin2-nephrin interaction by PKCα. We identified PKCα and protein interacting with c kinase-1 (PICK1) as nephrin-binding proteins. Hyperglycemia induced up-regulation of PKCα and led to the formation of a complex of nephrin, PKCα, PICK1, and β-arrestin2 in vitro and in vivo. Binding of β-arrestin2 to the nephrin intracellular domain depended on phosphorylation of nephrin threonine residues 1120 and 1125 by PKCα. Further, cellular knockdown of PKCα and/or PICK1 attenuated the nephrin-β-arrestin2 interaction and abrogated the amplifying effect of high blood glucose on nephrin endocytosis. In C57BL/6 mice, hyperglycemia over 24 h caused a significant increase in urinary albumin excretion, supporting the concept of the rapid impact of hyperglycemia on glomerular permselectivity. In summary, we have provided a molecular model of hyperglycemia-induced nephrin endocytosis and subsequent proteinuria and highlighted PKCα and PICK1 as promising therapeutic targets for diabetic nephropathy.  相似文献   

3.
FVB/NJ mice frequently are used as transgenic hosts, but the suitability of this genetic background for transgenic and congenic models of systemic autoimmunity have not been reported. In this study, FVB/NJ mice were evaluated for the presence of serum autoantibodies and autoimmune kidney pathology. Previously unreported albuminuria was observed in aged female FVB/NJ mice; however, serum autoantibody testing, light microscopic evaluation of differentially stained renal sections, and evaluation of renal sections for immunoglobulin deposits revealed that the albuminuria was not of autoimmune etiology. Anecdotally, multiple characteristics of the FVB/NJ strain, including albuminuria, cholesterolemia, mild podocyte foot process effacement in aged female FVB/NJ kidneys and predisposition to enhanced Th2 immune responses, is reminiscent of human minimal change nephrotic syndrome (MCNS). We propose that mapping of genetic polymorphisms that are responsible for these traits in FVB/NJ mice may lead to increased understanding of mild nephrotic syndromes including MCNS and other proteinurias.  相似文献   

4.
5.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. The early changes in DN are characterized by an increased in kidney size, glomerular volume, and kidney function, followed by the accumulation of glomerular extracellular matrix, increased urinary albumin excretion (UAE), glomerular sclerosis, and tubular fibrosis. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats. In the present study, we examined the beneficial effects of RSV on DN and explored the possible mechanism of RSV action.Male Sprague–Dawley rats were injected with streptozotocin at 65 mg/kg body weight. The induction of diabetes mellitus (DM) was confirmed by a fasting plasma glucose level ≥300 mg/dL and symptoms of polyphagia and polydipsia. The DM rats were treated with or without RSV at 0.75 mg/kg body weight 3 times a day for 8 weeks. Animals were sacrificed and kidney histology was examined by microscopy. Urinary albumin excretion, glomerular hypertrophy and expressions of fibronectin, collagen IV, and TGF-β in the glomeruli were alleviated in RSV-treated DM rats, but not in untreated DM rats. In addition, RSV treatment reduced the thickness of the glomerular basement membrane (GBM) to the original thickness and increased nephrin expressions to normal levels in DM rats. Moreover, RSV inhibited phosphorylation of smad2, smad3 and ERK1/2 in diabetic rat kidneys. This is the first report showing that RSV alleviates early glomerulosclerosis in DN through TGF-β/smad and ERK1/2 inhibition. In addition, podocyte injuries of diabetic kidneys are lessened by RSV.  相似文献   

6.
Microvascular rarefaction following an episode of acute kidney injury (AKI) is associated with renal hypoxia and progression toward chronic kidney disease. The mechanisms contributing to microvascular rarefaction are not well-understood, although disruption in local angioregulatory substances is thought to contribute. Matrix metalloproteinase (MMP)-9 is an endopeptidase important in modifying the extracellular matrix (ECM) and remodeling the vasculature. We examined the role of MMP-9 gene deletion on microvascular rarefaction in a rodent model of ischemic AKI. MMP-9-null mice and background control (FVB/NJ) mice were subjected to bilateral renal artery clamping for 20 min followed by reperfusion for 14, 28, or 56 days. Serum creatinine level in MMP-9-null mice 24 h after injury [1.4 (SD 0.8) mg/dl] was not significantly different from FVB/NJ mice [1.5 (SD 0.6) mg/dl]. Four weeks after ischemic injury, FVB/NJ mice demonstrated a 30-40% loss of microvascular density compared with sham-operated (SO) mice. In contrast, microvascular density was not significantly different in the MMP-9-null mice at this time following injury compared with SO mice. FVB/NJ mice had a 50% decrease in tissue vascular endothelial growth factor (VEGF) 2 wk after ischemic insult compared with SO mice. A significant difference in VEGF was not observed in MMP-9-null mice compared with SO mice. There was no significant difference in the liberation of angioinhibitory fragments from the ECM between MMP-9-null mice and FVB/NJ mice following ischemic injury. In conclusion, MMP-9 deletion stabilizes microvascular density following ischemic AKI in part by preserving tissue VEGF levels.  相似文献   

7.
Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN). C-C chemokine receptor (CCR)2 regulates monocyte/macrophage migration into injured tissues. However, the direct role of CCR2-mediated monocyte/macrophage recruitment in diabetic kidney disease remains unclear. We report that pharmacological blockade or genetic deficiency of CCR2 confers kidney protection in Ins2(Akita) and streptozotocin (STZ)-induced diabetic kidney disease. Blocking CCR2 using the selective CCR2 antagonist RS504393 for 12 wk in Ins2(Akita) mice significantly attenuated albuminuria, the increase in blood urea nitrogen and plasma creatinine, histological changes, and glomerular macrophage recruitment compared with vehicle. Furthermore, mice lacking CCR2 (CCR2(-/-)) mimicked CCR2 blockade by reducing albuminuria and displaying less fibronectin mRNA expression and inflammatory cytokine production compared with CCR2(+/+) mice, despite comparable blood glucose levels. Bone marrow-derived monocytes from CCR2(+/+) or CCR2(-/-) mice adoptively transferred into CCR2(-/-) mice reversed the renal tissue-protective effect in diabetic CCR2(-/-) mice as evaluated by increased urinary albumin excretion and kidney macrophage recruitment, indicating that CCR2 is not required for monocyte migration from the circulation into diabetic kidneys. These findings provide evidence that CCR2 is necessary for monocyte/macrophage-induced diabetic renal injury and suggest that blocking CCR2 could be a novel therapeutic approach in the treatment of DN.  相似文献   

8.
Clusterin is a secreted glycoprotein that is synthesized after several types of tubular injury. We therefore wondered whether the urinary excretion of clusterin could serve as a parameter to determine the severity of tubular damage. Using an affinity-purified rabbit antiserum raised against recombinant clusterin, we established an enzyme-linked immunosorbent assay to measure the urinary excretion of clusterin after bilateral renal ischemia, in the (cy/ +) rat model of autosomal-dominant polycystic kidney disease and in the FHH rat model of focal segmental glomerulosclerosis. After bilateral renal ischemia, the urinary excretion of clusterin paralleled the excretion of total protein and albumin and correlated with the extent of tubular damage. Male (cy/ +) rats, but not female (cy/ +) rats, excreted more clusterin than age-matched (+/ +) rats, a finding consistent with the more rapid course of the disease in males. FHH rats presented with pronounced proteinuria and albuminuria but did not excrete increased levels of clusterin. Urinary clusterin levels could therefore serve as a valuable marker for the severity of tubular damage. Furthermore, clusterin may also help to differentiate between tubular and glomerular forms of proteinuria.  相似文献   

9.
Some recommendations in the Guide for the Care and Use of Laboratory Animals (the Guide) are based on best professional judgment. Our current efforts are directed toward replacement with data-driven standards. We demonstrated earlier that young adult C57BL/6J mice could be housed with half the floor space recommended in the Guide without discernable negative effects. This report extends that work by examining optimal housing densities for young adult male and female BALB/cJ, NOD/LtJ, and FVB/NJ mice. These 8-week studies were initiated with 3-week-old BALB/cJ and NOD/LtJ mice and 3- to 5-week-old FVB/NJ mice housed in three cage types. We adjusted the number of mice per cage to house them with the floor space recommended in the Guide (approximately 12 in2 [ca. 77 cm2] per mouse) down to 5.6 in2 [ca. 36 cm2] per mouse. Early-onset aggression occurred among FVB/NJ male mice housed at all densities in cages having 51.7 in2 (ca. 333 cm2) or 112.9 in2 (ca. 728 cm2) of space. FVB/NJ male mice housed in shoebox (67.6 in2 [ca. 436 cm2]) cages did not exhibit aggression until the fifth week. Urinary testosterone output was density-dependent only for BALB/cJ male mice in shoebox cages (output decreased with increasing density) and FVB/NJ male mice. We conclude that all but FVB/NJ male mice can be housed with half the floor space specified in the Guide. The aggression noted for male FVB/NJ mice may have been due to their age span, although this did not impact negatively on the female FVB/NJ mice.  相似文献   

10.
This study was undertaken to determine whether hyperfiltration exists at the single nephron level and whether albumin excretion is increased early in the course of diabetes in Biobreeding rats. Diabetic rats were studied at 8-12 weeks after the onset of diabetes. Control animals were age-matched, diabetes-resistant rats. Urinary and tubular fluid albumin concentrations were measured by polyacrylamide gel electrophoresis. Clearance and micropuncture techniques were used to determine whole kidney and single nephron glomerular filtration rate, renal blood flow, and glomerular capillary pressure. The urinary albumin excretion rate (1.3 +/- 0.1 mg/24 hr) and the tubular fluid albumin concentration (4.7 +/- 0.7 mg/dl) in the diabetic group were significantly elevated when compared with urinary albumin excretion (0.9 +/- 0.1 mg/24 hr) and tubular fluid albumin concentration (2.5 +/- 0.5 mg/dl) in the control group. There were no significant differences in glomerular hemodynamics (whole kidney or single nephron glomerular filtration rate or glomerular capillary pressure) between diabetic and control rats. The kidney weight and kidney weight to body weight ratio were significantly higher in diabetic rats when compared with control rats. Early diabetes in Biobreeding rats is characterized by mild albuminuria and increased kidney size, but not glomerular hyperfiltration.  相似文献   

11.
We investigated the effects of dual renin-angiotensin system (RAS) blockade on angiotensin-converting enzyme-2 (Ace2) expression, hypertension, and renal proximal tubular cell (RPTC) apoptosis in type 1 diabetic Akita angiotensinogen (Agt)-transgenic (Tg) mice that specifically overexpress Agt in their RPTCs. Adult (11 wk old) male Akita and Akita Agt-Tg mice were treated with two RAS blockers (ANG II receptor type 1 blocker losartan, 30 mg·kg(-1)·day(-1)) and angiotensin-converting enzyme (ACE) inhibitor perindopril (4 mg·kg(-1)·day(-1)) in drinking water. Same-age non-Akita littermates and Agt-Tg mice served as controls. Blood pressure, blood glucose, and albuminuria were monitored weekly. The animals were euthanized at age 16 wk. The left kidneys were processed for immunohistochemistry and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess gene and protein expression. Urinary ANG II and ANG 1-7 were quantified by ELISA. RAS blockade normalized renal Ace2 expression and urinary ANG 1-7 levels (both of which were low in untreated Akita and Akita Agt-Tg), prevented hypertension, albuminuria, tubulointerstitial fibrosis and tubular apoptosis, and inhibited profibrotic and proapoptotic gene expression in RPTCs of Akita and Akita Agt-Tg mice compared with non-Akita controls. Our results demonstrate the effectiveness of RAS blockade in preventing intrarenal RAS activation, hypertension, and nephropathy progression in diabetes and support the important role of intrarenal Ace2 expression in modulating hypertension and renal injury in diabetes.  相似文献   

12.
AimsOVE26 mice (FVB background), genetically overexpressing calmodulin in pancreatic beta cells, develop early onset type 1 diabetes, leading to progressive diabetic nephropathy (DN), with features of established human DN. The role of gender in characteristics of renal lesions has remained unexplored.MethodsMale and female OVE26 mice were compared to age and sex matched wild-type, nondiabetic FVB mice at ages of 4, 12, 24 and 36 weeks. Nephropathy was examined by measuring urine albumin-to-creatinine ratio, histopathology, expression of pathological markers and immunochemistry in the same cohort of mice.ResultsProgression of diabetic kidney disease was evident first in the OVE26 glomerulus, initially as mesangial matrix expansion at 4 weeks followed by loss of podocytes, glomerular volume expansion and severe albuminuria at 12 weeks. Tubule dilation and initiation of interstitial fibrosis did not become significant until 24 weeks. T-lymphocyte infiltration into the renal parenchyma appeared at 36 weeks. OVE26 female mice developed more advanced DN than male OVE26 mice, such as more severe albuminuria, greater podocyte loss, additional fibrosis and significantly more inflammatory cell infiltration. The female OVE26 mice had lowest level of plasma estradiol in all 36 weeks old mice, as well as renal estrogen receptors.ConclusionsThis demonstration of the role of gender, combined with the detailed characterization of DN progression illustrates the value of OVE26 mice for understanding gender effects on DN and provides the basis for researchers to better select the age and sex of OVE26 mice in future studies of type 1 DN.Research in contextWhat is already known about this subject?
  • •OVE26 mice, genetically overexpressing calmodulin in pancreatic beta cells, develop early onset type 1 diabetes.
  • •OVE26 mice are a widely used and valuable rodent model which develop severe, progressive diabetic nephropathy, with features of established human diabetic nephropathy.
What is the key question?
  • •Does gender play a role in determining characteristics of renal lesions and severity of nephropathy?
What are the new findings?
  • •Female OVE26 mice had more severe albuminuria, greater podocyte loss.
  • •Female OVE26 mice had additional fibrosis and significantly more inflammatory cell infiltration.
  • •Diabetes induced reductions in estradiol levels and renal estrogen receptors may be responsible for the female sensitization to DN in OVE26 mice.
How might this impact on clinical practice in the foreseeable future?
  • •Our findings provide the basis for researchers to better select the age and sex of OVE26 mice in future studies of type 1 DN.
  相似文献   

13.
Nephrin is a key molecule in podocytes to maintain normal slit diaphragm structure. Nephin interacts with many other podocyte and slit diaphragm protein and also mediates important cell signaling pathways in podocytes. Loss of nephrin during the development leads to the congenital nephrotic syndrome in children. Reduction of nephrin expression is often observed in adult kidney diseases including diabetic nephropathy and HIV-associated nephropathy. The critical role of nephrin has been confirmed by different animal models with nephrin knockout and knockdown. Recent studies demonstrate that knockdown of nephrin expression in adult mice aggravates the progression of unilateral nephrectomy and Adriamycin-induced kidney disease. In addition to its critical role in maintaining normal glomerular filtration unit in the kidney, nephrin is also expressed in other organs. However, the exact role of nephrin in kidney and extra-renal organs has not been well characterized. Future studies are required to determine whether nephrin could be developed as a drug target to treat patients with kidney disease.  相似文献   

14.
Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. Since insulin resistance plays an important role in diabetic complications, we performed hyperinsulinemic-euglycemic clamps in awake Ins2(Akita) and wild-type mice to measure insulin action and glucose metabolism in vivo. Nonobese Ins2(Akita) mice developed insulin resistance, as indicated by an approximately 80% reduction in glucose infusion rate during clamps. Insulin resistance was due to approximately 50% decreases in glucose uptake in skeletal muscle and brown adipose tissue as well as hepatic insulin action. Skeletal muscle insulin resistance was associated with a 40% reduction in total GLUT4 and a threefold increase in PKCepsilon levels in Ins2(Akita) mice. Chronic phloridzin treatment lowered systemic glucose levels and normalized muscle insulin action, GLUT4 and PKCepsilon levels in Ins2(Akita) mice, indicating that hyperglycemia plays a role in insulin resistance. Echocardiography showed significant cardiac remodeling with ventricular hypertrophy that was ameliorated following chronic phloridzin treatment in Ins2(Akita) mice. Overall, we report for the first time that nonobese, insulin-deficient Ins2(Akita) mice develop type 2 diabetes phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling. Our findings provide important insights into the pathogenesis of metabolic abnormalities and complications affecting type 1 diabetes and lean type 2 diabetes subjects.  相似文献   

15.
Increased life expectancy in cystic fibrosis (CF) is accompanied by an increasing incidence of CF related diabetes (CFRD). Altered immune reactivity occurs in CF, which we hypothesize, is exacerbated by hyperglycemia. Cystic fibrosis transmembrane conductance regulator deficient (CFTR-/-) mice were rendered hyperglycemic by streptozotocin (STZ) to test this hypothesis. CFTR-/-, C57BL/6J, and FVB/NJ mice received either STZ or lactated ringers (LR) (n=5-10). Four weeks later, splenocytes were harvested, mitogen stimulated, and analyzed for cytokine production (IL-2, IL-4, and IL-10) along with stimulation indices (SI). SI of STZ-treated CFTR-/- were elevated compared to LR-treated mice, although both were greater than C57BL/6J and FVB/NJ (p<0.05). Fasting glucose levels of STZ-treated CFTR-/- mice correlated with SI (p<0.003). Stimulated IL-10 concentrations were elevated in STZ-treated CFTR-/- compared to LR-treated animals and controls (p<0.05). IL-2 levels were greater in CFTR-/- mice compared to controls (p<0.05), but unrelated to STZ. Reinforcing generalized cytokine up-regulation in CFTR-/-, IL-4 levels were greater in CFTR-/- mice compared to C57BL/6J, but FVB/NJ mice demonstrated greatest concentrations following STZ. These results suggest that, hyperglycemia may exacerbate the clinical course in CF by impacting immune reactivity. There is clear need to maximize metabolic management in CFRD.  相似文献   

16.
New biomarkers for oxidative damage, were used to identify whether hyperglycemia caused oxidative stress in diabetic Akita mice. At 13 weeks of age, the tissues of these mice were obtained, and the levels of N(epsilon)-(hexanonyl)lysine (HEL) and dityrosine (DT) were measured, these being related to lipid peroxide-derived protein covalent modification and protein cross-linking. The levels of HEL and DT in the kidneys of Akita mice were significantly increased compared with the control mice without any accumulation of thiobarbituric acid reactive substances and 4-hydroxy-2-nonenal-modified protein. Immunopositive staining was clearly observed in the kidneys of the Akita mice when using the anti-HEL antibody or anti-DT antibody. These results suggest that hyperglycemia in Akita mice induced oxidative stress and increased these markers in the kidneys.  相似文献   

17.
Calcineurin is an important signalling protein that regulates a number of molecular and cellular processes. Previously, we found that inhibition of calcineurin with cyclosporine reduced renal hypertrophy and blocked glomerular matrix expansion in the diabetic kidney. Isoforms of the catalytic subunit of calcineurin are reported to have tissue specific expression and functions. In particular, the β isoform has been implicated in cardiac and skeletal muscle hypertrophy. Therefore, we examined the role of calcineurin β in diabetic renal hypertrophy and glomerular matrix expansion. Type I diabetes was induced in wild-type and β−/− mice and then renal function, extracellular matrix expansion and hypertrophy were evaluated. The absence of β produced a significant decrease in total calcineurin activity in the inner medulla (IM) and reduced nuclear factor of activated T-cells (NFATc) activity. Loss of β did not alter diabetic renal dysfunction assessed by glomerular filtration rate, urine albumin excretion and blood urea nitrogen. Similarly, matrix expansion in the whole kidney and glomerulus was not different between diabetic wild-type and β−/− mice. In contrast, whole kidney and glomerular hypertrophy were significantly reduced in diabetic β−/− mice. Moreover, β−/− renal fibroblasts demonstrated impaired phosphorylation of Erk1/Erk2, c-Jun N-terminal kinases (JNK) and mammalian target of rapamycin (mTOR) following stimulation with transforming growth factor-β and did not undergo hypertrophy with 48 hrs culture in high glucose. In conclusion, loss of the β isoform of calcineurin is sufficient to reproduce beneficial aspects of cyclosporine on diabetic renal hypertrophy but not matrix expansion. Therefore, while multiple signals appear to regulate matrix, calcineurin β appears to be a central mechanism involved in organ hypertrophy.  相似文献   

18.
19.
Nephropathy is one of the most common complications of diabetes mellitus. Glomerular hypertrophy is a hallmark in the early phase of the nephropathy. The mechanism of glomerular hypertrophy, however, remains incompletely understood. We have reported that Gas6 (growth arrest-specific gene 6) and its receptor, Axl, play a key role in the development of glomerulonephritis. Here we show the important role of Gas6/Axl in the pathogenesis of diabetic glomerular hypertrophy. In streptozotocin (STZ)-induced diabetic rats, mesangial and glomerular hypertrophy and an increase in the glomerular filtration rate (GFR) and albuminuria were observed after 12 weeks of STZ injection. The glomerular expression of Gas6 and Axl was increased in those rats. Administration of warfarin inhibited mesangial and glomerular hypertrophy and the increase in GFR and albuminuria in STZ rats. Moreover, we found less mesangial hypertrophy in STZ-treated Gas6 knockout mice than control mice. In vitro we found that stimulation of mesangial cells with Gas6 resulted in mesangial cell hypertrophy. Thus we have found a novel mechanism of glomerular hypertrophy through the Gas6/Axl-mediated pathway in the development of diabetic nephropathy. Inhibition of the Gas6/Axl pathway in diabetic patients might be beneficial to slow down the progression of diabetic nephropathy.  相似文献   

20.
Abstract

We investigated the renoprotective effects of imidapril hydrochloride ((-)-(4?S)-3-[(2?S)-2-[[(1?S)-1-ethoxycarbonyl-3-phenylpropyl] amino] propionyl]-1-methyl-2-oxoimidazolidine-4-carboxylic acid hydrochloride, imidapril), an angiotensin-converting enzyme inhibitor, in a diabetic animal model. We used BKS.Cg-+Leprdb/+Leprdb (db/db) mice, a genetic animal model of obese type 2 diabetes. Diabetic db/db mice suffered from glomerular hyperfiltration, albuminuria and hypoalbuminemia. Oral administration of 5?mg/kg/day of imidapril for 3 weeks suppressed renal hyperfiltration, reduced albuminuria and normalized hypoalbuminemia. Imidapril did not influence body weights, blood pressure or blood glucose concentrations in db/db mice. Urinary excretion of heparan sulfate (HS) in non-treated 11-week-old db/db mice was significantly lower than that in age-matched non-diabetic db/+m mice. HS is a component of HS proteoglycans, which are present in glomerular basement membranes and glycocalyx of cell surfaces. Reduced urinary HS excretion indicated glomerular HS loss in db/db mice. Imidapril increased urinary excretion of HS to concentrations observed in db/+m mice, indicating that imidapril prevented the loss of renal HS. These results suggest that imidapril ameliorates renal hyperfiltration and loss of renal contents of HS. Improvement of filtration function and maintenance of HS, which is an important structural component of glomeruli, may contribute to renoprotective effects of imidapril.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号