首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic dinoflagellates of the genus Symbiodinium, also called zooxanthellae, are found in association with a wide diversity of shallow-water anthozoans. The Symbiodinium genus includes numerous lineages, also referred to as clades or phylotypes, as well as a wide diversity of genetic sub-clades and sub-phylotypes. There are few studies characterizing the genetic diversity of zooxanthellae in Mediterranean anthozoans. In this study, we included anthozoans from the Western Mediterranean Sea and by means of internal transcriber (ITS) and large sub-unit (LSU) rRNA markers we corroborate what has been previously identified, demonstrating that phylotype “Temperate A” is very common among host Cnidaria in this basin. Our finding of fixed differences in ITS and LSU markers that correspond to different host taxa, indicate that this clade may comprise several closely-related species. Previous studies have reported the occurrence of Symbiodinium psygmophilum (formerly sub-clade B2) associated with Oculina patagonica and Cladocora caespitosa in the Eastern Mediterranean. Here, we identify this association in O. patagonica from the Western Mediterranean but not in C. caespitosa, suggesting some differences in symbiotic combinations between the Western and Eastern Mediterranean Basins.  相似文献   

2.
Wheat genetic diversity trends during domestication and breeding   总被引:25,自引:0,他引:25  
It has been claimed that plant breeding reduces genetic diversity in elite germplasm which could seriously jeopardize the continued ability to improve crops. The main objective of this study was to examine the loss of genetic diversity in spring bread wheat during (1) its domestication, (2) the change from traditional landrace cultivars (LCs) to modern breeding varieties, and (3) 50 years of international breeding. We studied 253 CIMMYT or CIMMYT-related modern wheat cultivars, LCs, and Triticum tauschii accessions, the D-genome donor of wheat, with 90 simple sequence repeat (SSR) markers dispersed across the wheat genome. A loss of genetic diversity was observed from T. tauschii to the LCs, and from the LCs to the elite breeding germplasm. Wheats genetic diversity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. Our results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LCs and T. tauschii contain numerous unique alleles that were absent in modern spring bread wheat cultivars. Consequently, both the LCs and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germplasm.  相似文献   

3.
Species of Hepatozoon Miller, 1908 are blood parasites most commonly found in snakes but some have been described from all tetrapod groups and a wide variety of hematophagous invertebrates. Previous studies have suggested possible associations between Hepatozoon spp. found in predators and prey. Particularly, some saurophagous snakes from North Africa and the Mediterranean region have been found to be infected with Hepatozoon spp. similar to those of various sympatric lizard hosts. In this study, we have screened tissue samples of 111 North African and Mediterranean snakes, using specific primers for the 18S rRNA gene. In the phylogenetic analysis, the newly-generated Hepatozoon spp. sequences grouped separately into five main clusters. Three of these clusters were composed by Hepatozoon spp. also found in snakes and other reptiles from the Mediterranean Basin and North Africa. In the other two clusters, the new sequences were not closely related to geographically proximate known sequences. The phylogeny of Hepatozoon spp. inferred here was not associated with intermediate host taxonomy or geographical distribution. From the other factors that could explain these evolutionary patterns, the most likely seems series of intermediate hosts providing similar ribotypes of Hepatozoon and a high prevalence of host shifts for Hepatozoon spp. This is indicated by ribotypes of high similarity found in different reptile families, as well as by divergent ribotypes found in the same host species. This potentially low host specificity has profound implications for the systematics of Hepatozoon spp.  相似文献   

4.
The domestication of the wine yeast Saccharomyces cerevisiae is thought to be contemporary with the development and expansion of viticulture along the Mediterranean basin. Until now, the unavailability of wild lineages prevented the identification of the closest wild relatives of wine yeasts. Here, we enlarge the collection of natural lineages and employ whole‐genome data of oak‐associated wild isolates to study a balanced number of anthropic and natural S. cerevisiae strains. We identified industrial variants and new geographically delimited populations, including a novel Mediterranean oak population. This population is the closest relative of the wine lineage as shown by a weak population structure and further supported by genomewide population analyses. A coalescent model considering partial isolation with asymmetrical migration, mostly from the wild group into the Wine group, and population growth, was found to be best supported by the data. Importantly, divergence time estimates between the two populations agree with historical evidence for winemaking. We show that three horizontally transmitted regions, previously described to contain genes relevant to wine fermentation, are present in the Wine group but not in the Mediterranean oak group. This represents a major discontinuity between the two populations and is likely to denote a domestication fingerprint in wine yeasts. Taken together, these results indicate that Mediterranean oaks harbour the wild genetic stock of domesticated wine yeasts.  相似文献   

5.
M13 DNA fingerprinting was used to determine evolutionary changes that occurred in Latin American germ plasm and USA cultivars of commonbean (Phaseolus vulgaris L.) during domestication. Linkage mapping experiments showed that M13-related sequences in the common-bean genome were either located at the distal ends of linkage groups or that they were unlinked to each other or to any previously mapped markers. Levels of polymorphism observed by hybridization with M13 (1 probe-enzyme combination) were comparable to those observed by hybridization with single-copy random PstI genomic probes (36 enzyme-probe combinations) but were higher than those observed for isozymes (10 loci). Results indicated that the wild ancestor had diverged into two taxa, one distributed in Middle America (Mexico, Central America, and Colombia) and the other in the Andes (Peru and Argentina); they also suggested separate domestications in the two areas leading to two cultivated gene pools. Domestication in both areas led to pronounced reductions in diversity in cultivated descendants in Middle America and the Andes. The marked lack of polymorphism within commercial classes of USA cultivars suggests that the dispersal of cultivars from the centers of origin and subsequent breeding of improved cultivars led to high levels of genetic uniformity. To our knowledge, this is the first crop for which this reduction in diversity has been documented with a single type of marker in lineages that span the evolution between wild ancestor and advanced cultivars.  相似文献   

6.
Aim The aims of this study were to assess the distribution of putative Mediterranean refugia of plants, to compare the locations of refugia and those of regional hotspots of plant biodiversity, and to provide a critical analysis of the Mediterranean refugium paradigm. Furthermore, we consider how biogeographical and genetic results can be combined to guide global conservation strategies. Location The Mediterranean region. Methods We started from a detailed analysis of the scientific literature (1993–2007) in order to identify refugia in the Mediterranean region, based on intra‐specific phylogeographical studies of plant species. We used population locations together with gene‐pool identity to establish the database, comparing patterns of phylogeographical concordance with the locations of Mediterranean refugia. We then tested the biogeographical congruence between two biodiversity components, namely phylogeographical refugia and regional hotspots. Results We identified 52 refugia in the Mediterranean bioclimatic region and confirmed the role played by the three major peninsulas, with a shared total of 25 refugia. We emphasize the importance of areas that have previously been attributed a lesser role (large Mediterranean islands, North Africa, Turkey, Catalonia). Of the 52 refugia identified, 33 are situated in the western Mediterranean Basin and 19 in the eastern part. The locations of the phylogeographically defined refugia are significantly associated with the 10 regional hotspots of plant biodiversity, with 26 of these refugia (i.e. 50%) occurring within the hotspots. Main conclusions The locations of refugia are determined by complex historical and environmental factors, the cumulative effects of which need to be considered because they have occurred since the Tertiary, rather than solely during the last glacial period. Refugia represent climatically stable areas and constitute a high conservation priority as key areas for the long‐term persistence of species and genetic diversity, especially given the threat posed by the extensive environmental change processes operating in the Mediterranean region. The refugia defined here represent ‘phylogeographical hotspots’; that is, significant reservoirs of unique genetic diversity favourable to the evolutionary processes of Mediterranean plant species.  相似文献   

7.
Most studies on the genetic diversity of common bean (Phaseolus vulgaris L.) have focussed on accessions from the Mesoamerican gene pool compared to the Andean gene pool. A deeper knowledge of the genetic structure of Argentinian germplasm would enable researchers to determine how the Andean domestication event affected patterns of genetic diversity in domesticated beans and to identify candidates for genes targeted by selection during the evolution of the cultivated common bean. A collection of 116 wild and domesticated accessions representing the diversity of the Andean bean in Argentina was genotyped by means of 114 simple sequence repeat (SSR) markers. Forty-seven Mesoamerican bean accessions and 16 Andean bean accessions representing the diversity of Andean landraces and wild accessions were also included. Using the Bayesian algorithm implemented in the software STRUCTURE we identified five major groups that correspond to Mesoamerican and Argentinian wild accessions and landraces and a group that corresponds to accessions from different Andean and Mesoamerican countries. The neighbour-joining algorithm and principal coordinate clustering analysis confirmed the genetic relationships among accessions observed with the STRUCTURE analysis. Argentinian accessions showed a substantial genetic variation with a considerable number of unique haplotypes and private alleles, suggesting that they may have played an important role in the evolution of the species. The results of statistical analyses aimed at identifying genomic regions with consistent patterns of variation were significant for 35 loci (~20 % of the SSRs used in the Argentinian accessions). One of these loci mapped in or near the genomic region of the glutamate decarboxylase gene. Our data characterize the population structure of the Argentinian germplasm. This information on its diversity will be very valuable for use in introgressing Argentinian genes into commercial varieties because the majority of present-day common bean varieties are of Andean origin.  相似文献   

8.
9.
Genebank seed accessions of predominantly self-pollinating species may be stored either as bulked (mixed) seed lines or as pure line cultivars. If seed lines are bulked in storage then when considered over several regeneration cycles, loss of genetic diversity within heterogeneous self pollinating genebank accessions is shown to be severe. This within-accession loss of diversity represents opportunities foregone through the random loss of individual genotypes. Amongst working collections, the utility and repeatability of genebank accessions is paramount in the justification of the germ plasm resource. Therefore, the only practical solution to the management of predominantly self-pollinating species is to preserve individual accessions as pure lines.  相似文献   

10.
Since Darwin, there has been a long and arduous struggle to understand the source and maintenance of natural genetic variation and its relationship to phenotype. The reason that this task is so difficult is that it requires integration of detailed, and as yet incomplete, knowledge from several biological disciplines, including evolutionary, population, and developmental genetics. In this 'post-genomic' era, it is relatively easy to identify differences in the DNA sequence between individuals. However, the task remains to delineate how this abundant genetic diversity actually contributes to phenotypic diversity. This necessitates tackling the problem of hidden genetic variation. Genetic polymorphisms can be conditionally cryptic, but have the potential to contribute to phenotypic variation in particular genetic backgrounds or under specific environmental conditions. A recent paper by Lauter and Doebley highlights the contribution of hidden genetic variation to traits characterizing the morphological evolution of modern maize from its wild grass-like progenitor teosinte.1 This work is the first to demonstrate hidden variance for selected (agronomically 'adaptive') traits in a well-characterized model for morphological evolution.  相似文献   

11.
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species.  相似文献   

12.
Aim We address the question of whether broad scale biogeographical structure of species diversity (SD) matches that of genetic diversity (GD) of vascular plants. Location The Mediterranean basin. Methods We normalized vascular plant species richness (SD) estimates per country using the Med‐Checklist taxonomic database. We used a linear regression analysis to correlate normalized country estimates with country longitudinal position. We also compiled published and geo‐referenced within‐population GD data for tree species, which had populations in the Mediterranean. We normalized GD estimates for each population across species. Again, we used a linear regression analysis to correlate GD with population longitudinal position. We then compared the populations’ geographical and bioclimatic trends for GD with Last Glacial Maximum (LGM) palaeo‐climate data and the species current ecological requirements. Results The eastern Mediterranean and the coast of former Yugoslavia had higher SD than other regions. There was no overall spatial structure of SD in the Mediterranean, whereas there was an east–west trend of decreasing GD. This trend for GD tended to covary with an east–west warm/wet–cold/dry trend detected during the LGM. Low elevation xerothermic pine species displayed significantly less GD than higher elevation mesothermic or mountain pine species. Main conclusions We suggest that LGM climate may have significantly shaped the current longitudinal and altitudinal patterns of GD we observed in woody taxa across the Mediterranean, although it did not affect comparable SD patterns. In particular, colder LGM summer temperatures in the western Mediterranean may have reduced population sizes significantly more than in the eastern Mediterranean. As plant species richness and GD did not covary, SD and GD may not be used as surrogates of one another in the Mediterranean basin. As they contain comparatively less GD, conservation priorities in the Mediterranean should focus on hot spots of endemism and Western Mediterranean populations and species.  相似文献   

13.

Background and Aims

Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin.

Methods

The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars.

Key Results

Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives.

Conclusions

This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity.  相似文献   

14.
Aedes albopictus (Skuse), the important Asian vector mosquito recently introduced in United States and Brazil, is reported from Genoa, North Italy. The infestation was discovered in a kindergarten pre-school center in September 1990 just after the summer holidays. Many discarded tires, well known to provide excellent breeding places for Ae albopictus, had been left in the school playground to be used as toys by the children. After sampling a few biting mosquito specimens for identification, the local health service carried out on September 18 an extensive indoor/outdoor treatment with pyrethroid insecticide. The extent of the infestation in the city of Genoa and in other areas of the Ligurian region has not been evaluated since the identification of the species was available in October, at the end of Ae albopictus reproductive period. A general survey in various Italian regions is being planned for the 1991 spring-summer period. The present record, together with the previous report of Ae albopictus in Albania, clearly supports the hypothesis of a spreading of the species in the Mediterranean area.  相似文献   

15.
16.
Biodiversity conservation requires strategies that encompass a variety of land uses and habitat diversity. In this study, we used sites of high ecological interest identified on the basis of the distribution of priority plant and vertebrate species to assess the implications of habitat diversity for conservation management in the Mediterranean mosaic landscape. 40% of the priority species occur in open habitats that depend on continued human presence and low-intensity land-use activities. Furthermore, 70% of the sites have more than one species habitat and 15% of sites contain more than four different species habitats. By explicitly integrating localized habitat variation, conservation planning can address the multiple conservation issues at stake in regions of high landscape diversity to provide clear and effective management objectives.  相似文献   

17.
Molecular diversity, structure and domestication of grasses   总被引:19,自引:0,他引:19  
Map-based cloning has been considered problematic for isolating quantitative trait loci (QTLs) due to the confounding phenotypic effects of environment and other QTLs. However, five recent studies, all in plants, have succeeded in cloning QTLs using map-based methods. We review the important features of these studies and evaluate the prospects for broader application of the techniques. Successful map-based cloning requires that QTLs represent single genes that can be isolated in near-isogenic lines, and that genotypes can be unambiguously inferred by progeny testing. In plants or animals for which map-based cloning of genes with discrete phenotypes is feasible, the modified procedures required for QTLs should not be limiting in most cases. The choice between map-based cloning and alternative methods will depend on details of the species and traits being studied.  相似文献   

18.
Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment.  相似文献   

19.
20.
Concerns over the reductionist nature of the domestication of forest-tree species focus on the possibility of potential genetic erosion during this process. To address these concerns, genetic diversity assessments in a breeding zone the Province of British Columbia “interior” spruce (Picea glauca×engelmanni) program was conducted using allozyme markers. Genetic-variation comparisons were made between natural and production (seed orchard) populations as well as seed and seedling crops produced from the same breeding zone’s seed orchard. The natural population sample consisted of a total of 360 trees representing three stands within each of three watersheds present in the Shuswap-Adams low-elevation zone of interior British Columbia. Small amounts of genetic differentiation were observed among the nine natural populations (4%) and this was attributable to extensive gene flow Consequently, the sum of these nine populations was considered as a baseline for the genetic variation present in the breeding zone. The comparisons between the seed orchard and the breeding zone produced a similar percentage of polymorphic loci while the expected hetrozygosity (0.207 vs 0.210) and the average number of alleles per locus (2.7 vs 2.4) were slightly lower in the seed orchard. A total of seven natural populations’ rare alleles were not present in the orchard population, while one allele was unique to the orchard. The %P increased to 70.6% in the seedlot, but dropped to the natural populations level (64.7%) in the plantation. The observed increase in %P was a result of pollen contamination in the orchard. It is suspected that the reduction in the plantation was caused by an unintentional selection in the nursery. Simulated roguing in the orchard did not drastically reduce even if up to 50% of the orchard’s clones were rogued. However, roguing was associated with a reduction in the average number of alleles per locus (i.e., sampling effect). Received: 2 January 1996 / Accepted: 24 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号