首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the importance of pneumonic plague, little is known of the early pulmonary immune responses that occur following inhalation of Yersinia pestis. Therefore, we conducted studies to identify the early target cells for uptake of Y. pestis in the lungs following intratracheal or i.v. inoculation. Following intratracheal inoculation, Y. pestis was rapidly internalized primarily by a distinctive population of CD11c+DEC-205+CD11b- cells in the airways, whereas i.v. inoculation resulted in uptake primarily by CD11b+CD11c- macrophages and granulocytes in lung tissues. The airway cells internalized and were infected by Y. pestis, but did not support active replication of the organism. Intratracheal inoculation of Y. pestis resulted in rapid activation of airway CD11c+ cells, followed within 24 h by the selective disappearance of these cells from the airways and lungs and the accumulation of apoptotic CD11c+ cells in draining lymph nodes. When CD11c+ cells in the airways were depleted using liposomal clodronate before infection, this resulted in a significantly increased replication of Y. pestis in the lungs and dissemination to the spleen and draining lymph nodes. These findings suggest that CD11c+ cells in the airways play an important role in suppressing the initial replication and dissemination of inhaled Y. pestis, although these results will also require confirmation using fully virulent strains of Y. pestis. Depletion of these airway cells by Y. pestis may therefore be one strategy the organism uses to overcome pulmonary defenses following inhalation of the organism.  相似文献   

2.
Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MPhis) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MPhis and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MPhisby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MPhis and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MPhis could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.  相似文献   

3.
Yersinia pestis has evolved from Yersinia pseudotuberculosis serotype O:1b. A typical Y. pestis contains three plasmids: pCD1, pMT1 and pPCP1. However, some isolates only harbor pCD1 (pCD1+-mutant). Y. pestis and Y. pseudotuberculosis share a common plasmid (pCD1 or pYV), but little is known about whether Y. pseudotuberculosis exhibited plague-inducing potential before it was evolved into Y. pestis. Here, the luxCDABE::Tn5::kan was integrated into the chromosome of the pCD1+-mutant, Y. pseudotuberculosis or Escherichia coli K12 to construct stable bioluminescent strains for investigation of their dissemination in mice by bioluminescence imaging technology. After subcutaneous infection, the pCD1+-mutant entered the lymph nodes, followed by the liver and spleen, and, subsequently, the lungs, causing pathological changes in these organs. Y. pseudotuberculosis entered the lymph nodes, but not the liver, spleen and lungs. It also resided in the lymph nodes for several days, but did not cause lymphadenitis or pathological lesions. By contrast, E. coli K12-lux was not isolatable from mouse lymph nodes, liver, spleen and lungs. These results indicate that the pCD1+-mutant can cause typical bubonic and pneumonic plague-like diseases, and Y. pestis has inherited lymphoid tissue tropism from its ancestor rather than acquiring these properties independently.  相似文献   

4.
We have examined the generation of CTL immunity immediately after localized footpad infection with herpes simplex virus 1 (HSV-1) using three coordinated in vivo T cell tracking methodologies. Tetrameric MHC class I containing the immunodominant peptide from HSV-1 glycoprotein B (gB) showed that after infection the proportion of Ag-specific T cells peaked at day 5 within draining popliteal lymph nodes and 2 days later in the spleen. Preferential expression of the activation marker CD25 by tetramer-positive cells in draining popliteal nodes but not spleen suggested that gB-specific T cells were initially activated within the lymph node. In vivo cytotoxicity assays showed that Ag-specific effector cells were present within the draining lymph nodes as early as day 2 after infection, with a further 2-day lag before detection in the spleen. Consistent with the very early arming of effector CTL in the draining lymph node, adoptive transfer of CFSE-labeled gB-specific transgenic T cells showed that they had undergone one to four rounds of cell division by day 2 after infection. In contrast, proliferating T cells were first detected in appreciable numbers in the spleen on day 4, at which time they had undergone extensive cell division. These data demonstrate that HSV-1-specific T cells are rapidly activated and armed within draining lymph nodes shortly after localized HSV-1 infection. This is followed by their dissemination to other compartments such as the spleen, where they further proliferate in an Ag-independent fashion.  相似文献   

5.
The relationship between immunosuppression and suppressor cell activity in the lymphoid organs of animals with experimental African trypanosomiasis has been examined further. In the present study we measure the primary in vitro PFC response to SRBC by spleen and lymph node cells from Trypanosoma rhodesiense infected or drug-cured C57BL/6 mice. Passive transfer experiments with this culture system tested for the presence or absence of suppressor cells. We demonstrate that infected mice exhibit immunosuppression in the spleen cell population several weeks before becoming suppressed at the level of the lymph node cell populations. Although suppressor cells are present in immunosuppressed spleen cell populations, suppression of lymph node cell responsiveness was not attributable to suppressor cells detectable withi, lymph nodes. After Berenil treatment of terminally infected mice immunocompetence was restored gradually, first to the lymph node cells and subsequently to the spleen cell population. Recovery of spleen cell responsiveness was attributable to the loss of detectable suppressor cell activity within spleens. These results demonstrate that there is anatomical restriction of the suppressor cell population to trypanosome-infected mouse spleen and that loss of immunocompetence in the lymph nodes may be due to factors unrelated to suppressor cell effects.  相似文献   

6.
Many prion diseases are peripherally acquired (e.g., orally or via lesions to skin or mucous membranes). After peripheral exposure, prions replicate first upon follicular dendritic cells (FDC) in the draining lymphoid tissue before infecting the brain. However, after replication upon FDC within the draining lymphoid tissue, prions are subsequently propagated to most nondraining secondary lymphoid organs (SLO), including the spleen, by a previously underdetermined mechanism. The germinal centers in which FDC are situated produce a population of B cells that can recirculate between SLO. Therefore, we reasoned that B cells were ideal candidates by which prion dissemination between SLO may occur. Sphingosine 1-phosphate receptor (S1PR)1 stimulation controls the egress of T and B cells from SLO. S1PR1 signaling blockade sequesters lymphocytes within SLO, resulting in lymphopenia in the blood and lymph. We show that, in mice treated with the S1PR modulator FTY720 or with S1PR1 deficiency restricted to B cells, the dissemination of prions from the draining lymph node to nondraining SLO is blocked. These data suggest that B cells interacting with and acquiring surface proteins from FDC and recirculating between SLO via the blood and lymph mediate the initial propagation of prions from the draining lymphoid tissue to peripheral tissues.  相似文献   

7.
Graft-versus-host disease (GVHD) results from immunemediated attacks on recipient tissues by donor-originated cells through the recognition of incompatible antigens expressed on host cells. The pre-conditioning irradiation dose is a risk factor influencing GVHD severity. In this study, using newly generated luciferase transgenic mice on a B6 background (B6.LucTg) as bone marrow and splenocyte donors, we explored the effects of irradiation doses on donor cell dynamics in major histocompatibility complex (MHC)-matched allogeneic GVHD hosts via bioluminescence imaging (BLI). Results from BLI of GVHD hosts showed higher emission intensities of luminescence signals from hosts irradiated with 900 cGy as compared with those irradiated with 400 cGy. In particular, BLI signals from target organs, such as the spleen, liver, and lung, and several different lymph nodes fluctuated with similar time kinetics soon after transplantation, reflecting the synchronous proliferation of donor cells in the different organs in hosts irradiated with 900 cGy. The kinetic curves of the BLI signals were not synchronized between the target organs and the secondary organs in hosts irradiated with 400 cGy. These results demonstrate that pre-conditioning doses influence the kinetics and degree of proliferation in the target organs soon after transplantation. The results from this study are the first describing donor cell dynamics in MHC-matched allogeneic GVHD hosts and the influence of irradiation doses on proliferation dynamics, and will provide spatiotemporal information to help understand GVHD pathophysiology.  相似文献   

8.
Lymphocytic choriomeningitis virus (LCMV) causes a systemic infection in mice with virus replication occurring in both peripheral tissues and secondary lymphoid organs. Because of the rapid systemic dissemination of the virus, the secondary lymphoid organs responsible for the induction of the LCMV-specific CD8 T cell response are poorly defined. We show that the mediastinal lymph node (MedLN) serves as the primary draining lymph node following LCMV infection. In addition, we demonstrate that the MedLN is responsible for priming the majority of the virus-specific CD8 T cell response. Following resolution of the acute infection, the draining MedLN exhibits characteristics of a reactive lymph node including an increased presence of germinal center B cells and increased cellularity for up to 60 days post-infection. Furthermore, the reactive MedLN harbors an increased frequency of CD62L effector memory CD8 T cells as compared to the non-draining lymph nodes. The accumulation of LCMV-specific CD62L memory CD8 T cells in the MedLN is independent of residual antigen and is not a unique feature of the MedLN as footpad infection with LCMV leads to a similar increase of virus-specific CD62L effector memory CD8 T cells in the draining popliteal lymph node. Our results indicate that CD62L effector memory CD8 T cells are granted preferential access into the draining lymph nodes for an extended time following resolution of an infection.  相似文献   

9.
Potential benefits of combination antibiotic therapy for the treatment of plague have never been evaluated. We compared the efficacy of a ciprofloxacin (CIN) and gentamicin (GEN) combination therapy with that of each antibiotic administered alone (i) against Yersinia pestis in vitro and (ii) in a mouse model of bubonic plague in which animals were intravenously injected with antibiotics for five days, starting at two different times after infection (44 h and 56 h). In vitro, the CIN+GEN combination was synergistic at 0.5x the individual drugs’ MICs and indifferent at 1x- or 2x MIC. In vivo, the survival rate for mice treated with CIN+GEN was similar to that observed with CIN alone and slightly higher than that observed for GEN alone 100, 100 and 85%, respectively when treatment was started 44 h post challenge. 100% of survivors were recorded in the CIN+GEN group vs 86 and 83% in the CIN and GEN groups, respectively when treatment was delayed to 56 h post-challenge. However, these differences were not statistically significant. Five days after the end of treatment, Y. pestis were observed in lymph nodes draining the inoculation site (but not in the spleen) in surviving mice in each of the three groups. The median lymph node log10 CFU recovered from persistently infected lymph nodes was significantly higher with GEN than with CIN (5.8 vs. 3.2, p = 0.04) or CIN+GEN (5.8 vs. 2.8, p = 0.01). Taken as the whole, our data show that CIN+GEN combination is as effective as CIN alone but, regimens containing CIN are more effective to eradicate Y. pestis from the draining lymph node than the recommended GEN monotherapy. Moreover, draining lymph nodes may serve as a reservoir for the continued release of Y. pestis into the blood – even after five days of intravenous antibiotic treatment.  相似文献   

10.
The lymph nodes which drain the sites of percutaneous vaccination with optimally irradiated cercariae of Schistosoma mansoni were surgically excised in studies to determine their role in the induction of protective immunity. Lymphadenectomy of the axillary and inguinal nodes which drain the abdominal exposure site, or of the cervical node which drains the aural site of exposure, five days prior to vaccination reduced the levels of resistance by two-thirds. Excision of these nodes on Days 5, 10, 15, or 20 postvaccination also significantly reduced the levels of immunity induced, though ablation was less effective at later times. Removal of lymph nodes not draining the site of vaccination had no effect on the induction of resistance. We interpret the results as indicating that successful vaccination of mice against S. mansoni requires the presentation of antigen to lymphocytes in local lymph nodes draining the vaccination site, rather than distant lymphoid organs such as the spleen.  相似文献   

11.
The ability of mycobacteria to disseminate from the initial site of infection has an important role in immune priming and in the seeding of disease in multiple organs. To study this phenomenon, we used flow cytometry to analyse the distribution of green fluorescent protein-labelled BCG amongst different populations of antigen-presenting cells in the lungs of mice following intranasal infection, and monitored appearance of live bacteria in the draining mediastinal lymph nodes. BCG predominantly infected alveolar macrophages (CD11c(+)/CD11b(-)) and dendritic cells (CD11c(+)/CD11b(+)) in the lungs. The bacteria that disseminated to the lymph node were found in dendritic cells. The results are consistent with a model in which mycobacterial dissemination from the lung is initiated by the migration of infected dendritic cells to the draining lymph nodes.  相似文献   

12.
The suppressive effects of delta 9-tetrahydrocannabinol (THC) on the proliferation of lymphocytes from the spleen, lymph node, and thymus of weanling animals vs adult animals to the T-cell mitogen PHA were examined. THC had a suppressive effect on thymus cells from animals of both younger and older mice. THC suppressed spleen and lymph node cells responses to phytohemagglutinin (PHA) more readily when the cells were obtained from young mice rather than older animals. Suppression by THC in the adult mice was greater in an organ containing fewer mature T lymphocytes such as the thymus in comparison to lymphocytes in secondary organs such as the spleen and lymph nodes which contain more mature lymphocytes.  相似文献   

13.
Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.  相似文献   

14.
Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen.  相似文献   

15.
The migration of splenic T and B lymphocytes into syngeneic tumors undergoing immunologic rejection was investigates. Spleen cells were obtained from normal BALC/c mice or BALB/c mice bearing tumors induced by murine sarcoma virus (MSV). Either whole spleen cells or immunoabsorbent purified T and B cells were radiolabeled with sodium chromate-51 and injected i.v. into normal or MSV inducted-tumor bearing syngeneic recipients. Twenty-four hours later the recipient mice were sacrificed and radioactivity was assessed for tumor, contralateral normal muscle, the lymph nodes draining the tumor and contralateral draining lymph nodes, peripheral lymph nodes, spleen, and liver. Both T and B lymphocytes from either normal or MSV tumor-bearing animals show greatly increased migration into the tumor when compared with normal muscle. Migration of T cells from both normal and MSV tumor bearers was 30 times that of migration to normal muscle. B cells from tumor-bearing mice, on the other hand, localized in the tumor itself only 50% as frequently as did B cells from normal animals. In addition, T cells from MSV tumor bearers were found in the highest proportion in the lymph node draining the tumor site. We conclude that T and B lymphocytes from either normal or tumor-bearing mice migrate to a syngeneic tumor undergoing immunologic rejection. In contrast, the migration of both T and B cells from tumor-bearing animals was decreased to the peripheral lymph nodes at the time of maximum tumor growth.  相似文献   

16.
Pseudomonas aeruginosa infection depresses contact sensitivity to oxazolone in mice. To test whether an altered lymphocyte circulation plays a role in this depression51Cr-labeled lymphocytes fromP. aeruginosa-infected and oxazolone-sensitized donors were injected intravenously into infected and sensitized recipients, and the radioactivity uptake of several organs was determine. The controls consisted of normal mice receiving labeled lymphocytes from normal donors. While the radioactivity recovered from the liver, spleen, and mesenteric lymph nodes was similar in the test and the control group, significantly more radioactivity was recovered from the draining lymph nodes of infected and sensitized recipients. The concentration of labeled lymphocytes from sensitized donors in the draining lymph nodes of sensitized recipients was 18% greater than that of the controls but 31% lower than that of infected and sensitized animals receiving cells from infected and sensitized donors.P. aeruginosa infection enhances lymphocyte entrapment within the draining lymph nodes of oxazolone-sensitized mice.  相似文献   

17.
Tian G  Qiu Y  Qi Z  Wu X  Zhang Q  Bi Y  Yang Y  Li Y  Yang X  Xin Y  Li C  Cui B  Wang Z  Wang H  Yang R  Wang X 《PloS one》2011,6(4):e19260
In our previous study, complete protection was observed in Chinese-origin rhesus macaques immunized with SV1 (20 μg F1 and 10 μg rV270) and SV2 (200 μg F1 and 100 μg rV270) subunit vaccines and with EV76 live attenuated vaccine against subcutaneous challenge with 6×10(6) CFU of Y. pestis. In the present study, we investigated whether the vaccines can effectively protect immunized animals from any pathologic changes using histological and immunohistochemical techniques. In addition, the glomerular basement membranes (GBMs) of the immunized animals and control animals were checked by electron microscopy. The results show no signs of histopathological lesions in the lungs, livers, kidneys, lymph nodes, spleens and hearts of the immunized animals at Day 14 after the challenge, whereas pathological alterations were seen in the corresponding tissues of the control animals. Giemsa staining, ultrastructural examination, and immunohistochemical staining revealed bacteria in some of the organs of the control animals, whereas no bacterium was observed among the immunized animals. Ultrastructural observation revealed that no glomerular immune deposits on the GBM. These observations suggest that the vaccines can effectively protect animals from any pathologic changes and eliminate Y. pestis from the immunized animals. The control animals died from multi-organ lesions specifically caused by the Y. pestis infection. We also found that subcutaneous infection of animals with Y. pestis results in bubonic plague, followed by pneumonic and septicemic plagues. The histopathologic features of plague in rhesus macaques closely resemble those of rodent and human plagues. Thus, Chinese-origin rhesus macaques serve as useful models in studying Y. pestis pathogenesis, host response and the efficacy of new medical countermeasures against plague.  相似文献   

18.
Progressive growth of the P815 mastocytoma in an immunocompetent host evokes the generation of an antitumor immune response that can be measured in terms of the production of cytolytic Ly-1+2+ T cells in the draining lymph node and spleen. This immunity, designated concomitant immunity, is present on day 6 of tumor growth, peaks on day 9, and decays progressively thereafter. It fails to develop in mice made T cell deficient by thymectomy and lethal whole-body gamma-radiation, and reconstituted with syngeneic bone marrow cells (TXB mice). Employment of a mouse survival assay, capable of enumerating metastatic P815 cells in cell suspensions, showed that the P815 tumor metastasizes to the draining lymph node and spleen at the same rate in normal and TXB mice for the first 6 days of growth of an intradermal P815 tumor. By day 6 of tumor growth there were approximately 10(3) P815 cells in the draining lymph node in both types of mice. However, during the generation of concomitant immunity between days 6 and 9, the number of metastatic P815 cells in the draining lymph nodes and spleens of normal tumor-bearing mice declined by nearly 90%. After day 12, however, the number of tumor cells in the nodes and spleens increased concordantly with the decay of concomitant immunity. These findings, together with the demonstration that T cell-deficient mice failed to restrain the number of metastatic P815 cells in the draining lymph node and spleen, suggest that concomitant immunity is an important defense mechanism against the development of systemic disease. Additional evidence consistent with this interpretation was provided by studies which showed that adoptive immunization with spleen cells from concomitant immune donors significantly prolonged the median survival time of TXB tumor-bearing mice by destroying a substantial proportion of P815 tumor cells already seeded in the draining lymph node. Adoptive immunization also delayed the appearance of metastatic tumor cells in the spleen.  相似文献   

19.
The authors have studied the effect of Y. pestis "mouse" toxin (LD50), injected intravenously to rats, on cAMP and cGMP content in the tissues of different organs (the lungs, liver, heart, spleen, kidneys, small intestine) and in the blood in the course of the development of toxinfection shock. The effect of Y. pestis "mouse" toxin on cyclic nucleotide content in the organs of experimental animals is determined by the sum of oppositely directed effects produced by the thermostable and thermolabile fractions of the toxin. Its thermostable fraction, when introduced in the dose used in the experiments, did not kill the animals. The most pronounced changes in the cyclic nucleotide content have been detected in the lungs which appear to be the main target organ for Y. pestis "mouse" toxin.  相似文献   

20.
In many common cancers, dissemination of secondary tumors via the lymph nodes poses the most significant threat to the affected individual. Metastatic cells often reach the lymph nodes by mimicking the molecular mechanisms used by hematopoietic cells to traffic to peripheral lymphoid organs. Therefore, we exploited naive T cell trafficking in order to chaperone an oncolytic virus to lymphoid organs harboring metastatic cells. Metastatic burden was initially reduced by viral oncolysis and was then eradicated, as tumor cell killing in the lymph node and spleen generated protective antitumor immunity. Lymph node purging of tumor cells was possible even in virus-immune mice. Adoptive transfer of normal T cells loaded with oncolytic virus into individuals with cancer would be technically easy to implement both to reduce the distribution of metastases and to vaccinate the affected individual in situ against micrometastatic disease. As such, this adoptive transfer could have a great therapeutic impact, in the adjuvant setting, on many different cancer types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号