首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Silkworms contain a powerful and effective fibroin promoter, which controls the expression of fibroin, a silk protein. The fibroin promoter and well-known characteristics of silkworm, the application of transgenic technique to silkworm will provide an excellent opportunity to mass-produce biomolecules. In this study, the production of recombinant human insulin like growth factor-I (rhIGF-I) in the silkworm system was designed. The method makes use of the microinjection technique and P element vector to transfer foreign genes into the chromosomes. We constructed the expression vector using the fibroin gene promoter and P element vector containing IGF-I gene (pFpIGF-I). We then microinjected this vector into eggs, and through PCR screening, transgenic silkworms were selected. We isolated and purified rhIGF-I from silkworm cocoons, returning a concentration of rhIGF-I of about 1,300 ng/g from transgenic silkworm cocoons. In a comparison of transgenic silkworm rhIGF-I and colostral IGF-I on cell proliferation, colostral IGF-I was better able to increase the proliferation rate of the cell line relative to the transgenic silkworm rhIGF-I, and showed a similar cell proliferation pattern. The anti-cancer effects of transgenic silkworm rhIGF-I were higher than that of colostral IGF-I on HeLa and SNU-C1 cancer cells. These results confirmed the construction of new transgenic silkworm strains producing rhIGF-I.  相似文献   

3.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

4.
Liu  Rongpeng  Zeng  Wenhui  Tan  Tingting  Chen  Tao  Luo  Qin  Qu  Dawei  Tang  Yiyun  Long  Dingpei  Xu  Hanfu 《Transgenic research》2019,28(5-6):627-636
Transgenic Research - The silkworm Bombyx mori is a valuable insect that synthesizes bulk amounts of fibroin protein in its posterior silk gland (PSG) and weaves these proteins into silk cocoons....  相似文献   

5.
Major royal jelly protein-1 (MRJP1) is the most abundant glycoprotein of royal jelly (RJ) and is considered a potential component of functional foods. In this study, we used silkworm transgenic technology to obtain five transgenic silkworm lineages expressing the exogenous recombinant Chinese honeybee, Apis cerana cerana, protein-1 (rAccMRJP1) under the control of a fibroin light chain (Fib-L) promoter in the posterior silk glands. The protein was successfully secreted into cocoons; specifically, the highest rAccMRJP1 protein content was 0.78% of the dried cocoons. Our results confirmed that the protein band of the exogenous rAccMRJP1 protein expressed in the transgenic silkworm lineages was a glycosylated protein. Therefore, this rAccMRJP1 protein could be used as an alternative standard protein sample to measure the freshness of RJ. Moreover, we also found that the overall trend between the expression of the endogenous and exogenous genes was that the expression level of the endogenous Fib-L gene declined as the expression of the exogenous rAccMRJP1 gene increased in the transgenic silkworm lineages. Thus, by employing genome editing technology to reduce silk protein expression levels, a silkworm bioreactor expression system could be developed as a highly successful system for producing various valuable heterologous proteins, potentially broadening the applications of the silkworm.  相似文献   

6.
We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although the native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.  相似文献   

7.
Transgenic silkworms produce recombinant human type III procollagen in cocoons   总被引:10,自引:0,他引:10  
We describe the generation of transgenic silkworms that produce cocoons containing recombinant human collagen. A fusion cDNA was constructed encoding a protein that incorporated a human type III procollagen mini-chain with C-propeptide deleted, a fibroin light chain (L-chain), and an enhanced green fluorescent protein (EGFP). This cDNA was ligated downstream of the fibroin L-chain promoter and inserted into a piggyBac vector. Silkworm eggs were injected with the vectors, producing worms displaying EGFP fluorescence in their silk glands. The cocoons emitted EGFP fluorescence, indicating that the promoter and fibroin L-chain cDNAs directed the synthesized products to be secreted into cocoons. The presence of fusion proteins in cocoons was demonstrated by immunoblotting, collagenase-sensitivity tests, and amino acid sequencing. The fusion proteins from cocoons were purified to a single electrophoretic band. This study demonstrates the viability of transgenic silkworms as a tool for producing useful proteins in bulk.  相似文献   

8.
9.
Silk proteins were isolated from the cocoons of the nonmulberry silkworm, Philosamia ricini. Three polypeptides of 97, 66, and 45 kDa were identified. The 66-kDa molecule represented sericin, whereas the 97-kDa and the 45-kDa polypeptides linked together through a disulfide bond constituted the fibroin protein. Antibodies raised against the 97-kDa P. ricini fibroin heavy chain reacted specifically with this molecule and did not recognize fibroin heavy chain from another nonmulberry silkworm, Antheraea assama or from the mulberry silkworm, Bombyx mori, suggesting the presence of P. ricini species-specific determinants in this heavy chain. Antibodies generated against fibroin light chain of P. ricini also showed similar reactivity pattern. Immunoblot analysis with proteins isolated from the silk glands of P. ricini at different stages of larval development showed that the expression of fibroin heavy chain was developmentally and spatially regulated. The protein was most abundant in the 5th instar larva, and could be detected in the middle and the posterior but not the anterior silk glands. The amino acid composition of the 97-kDa fibroin protein showed abundance of glutamic acid and did not contain (Gly-Ala)(n) motifs, a characteristic feature of B. mori fibroin heavy chain. Our study reveals significant differences between the nonmulberry silkworm P. ricini and the mulberry silkworm B. mori in the biochemical composition and immunochemical characteristics of fibroin heavy chain. These differences might be responsible for the differences seen in the quality of silk produced by these two silkworms.  相似文献   

10.
In this study we produced germline transgenic silkworms that spin cocoons containing recombinant human serum albumin (rHSA) in the sericin layer. A piggyBac-based transformation vector was constructed that carried HSA cDNA driven by sericin-1 gene promoter, viral enhancer hr3, and gene encoding viral trans-activator IE1. Isolated silk glands were bombarded with the vector and transplanted into host larvae. Three days later, the transplants were immunohistochemically analyzed, which showed that middle silk gland (MSG) cells expressed rHSA and secreted it into the MSG lumen. Then, silkworm eggs were injected with the vector and developed to larvae. The obtained transgenic silkworms spun silk threads whose sericin layers contained rHSA at 3.0microg/mg of cocoons. Most (83%) of the rHSA in cocoons was extracted with phosphate buffered saline, which was then subjected to ammonium sulfate precipitation and affinity chromatography. Finally, we obtained 2.8mg of 99%-pure rHSA from 2g of cocoons. Measurements of circular dichroism spectra of rHSA, and equilibrium dissociation constants of rHSA to warfarin and naproxen indicated that rHSA was conformationally and functionally identical to natural plasma HSA. Germline transgenic silkworms will be useful for producing various recombinant proteins in the sericin layer of cocoons.  相似文献   

11.
转植酸酶基因家蚕的制作及表达检测   总被引:4,自引:0,他引:4  
家蚕Bombyx mori丝腺具有高效合成蛋白质的特性,开发在丝腺特异表达外源蛋白质的生物反应器具有重要的意义。本研究利用piggyBac来源的两种载体pPIGA3GFP和pBac{3×P3-EGFPaf},建立了稳定的家蚕转基因技术体系; 然后,利用一株黑曲霉来源的植酸酶基因,构建了在家蚕后部丝腺特异表达的融合表达载体pBac [3×P3-EGFP+ FibLphyADsRed],注射蚕卵后,在53个G1蛾区中检测到3个有荧光蚕的蛾区。经Southern blot和反向PCR验证,转基因表达盒整合到家蚕染色体上。RT-PCR结果显示,植酸酶基因特异性地在后部丝腺表达,其表达模式与家蚕轻链丝素基因一致。结果表明我们成功获得了在后部丝腺特异表达植酸酶融合蛋白的转基因蚕,这为进一步开发家蚕生物反应器,利用转基因蚕生产各种重组蛋白具有积极的促进作用。  相似文献   

12.
The silkworm Nd-s(D) mutant is silk fibroin-secretion deficient. In the mutant, a disulfide linkage between the heavy (H) and light (L) chains, which is essential for the intracellular transport and secretion of fibroin, is not formed because of a partial deletion of the L-chain gene. To utilize the inactivity of the mutant L-chain, we investigated the possibility of using the Nd-s(D) mutant for the efficient production of recombinant proteins in the silkworm. A germ line transformation of the mutant with a normal L-chain-GFP fusion gene was performed. In the transgenic mutant, normal development of the posterior silk gland (PSG) was restored and it formed a normal cocoon. The biochemical analysis showed that the transgenic silkworms expressed the introduced gene in PSG cells, produced a large amount of the recombinant protein, secreted it into the PSG lumen, and used it to construct the cocoon. The molar ratio of silk proteins, H-chain:L-chain-GFP:fibrohexamerin, in the lumen and cocoon in the transgenic silkworm was 6:6:1, and the final product of the fusion gene formed about 10% of the cocoon silk. This indicates that the transgenic mutant silkworm possesses the capacity to produce and secrete the recombinant proteins in a molar ratio equal to that of the fibroin H-chain, contributing around half molecules of the total PSG silk proteins.  相似文献   

13.
Insects produce silk for a range of purposes. In the Lepidoptera, silk is utilized as a material for cocoon production and serves to protect larvae from adverse environmental conditions or predators. Species in the Saturniidae family produce an especially wide variety of cocoons, for example, large, golden colored cocoons and those with many small holes. Although gene expression in the silk gland of the domestic silkworm (Bombyx mori L.) has been extensively studied, considerably fewer investigations have focused on members of the saturniid family. Here, we established expression sequence tags from the silk gland of the eri silkworm (Samia ricini), a saturniid species, and used these to analyze gene expression. Although we identified the fibroin heavy chain gene in the established library, genes for other major silk proteins, such as fibroin light chain and fibrohexamerin, were absent. This finding is consistent with previous reports that these latter proteins are lacking in saturniid silk. Recently, a series of fibrohexamerin‐like genes were identified in the Bombyx genome. We used this information to conduct a detailed analysis of the library established here. This analysis identified putative homologues of these genes. We also found several genes encoding small silk protein molecules that are also present in the silk of other Lepidoptera. Gene expression patterns were compared between eri and domestic silkworm, and both conserved and nonconserved expression patterns were identified for the tested genes. Such differential gene expression might be one of the major causes of the differences in silk properties between these species. We believe that our study can be of value as a basic catalogue for silk gland gene expression, which will yield to the further understanding of silk evolution.  相似文献   

14.
The possibility of using wild non-mulberry silk protein as a biopolymer remains unexplored compared to domesticated mulberry silk protein. One of the main reasons for this was for not having any suitable method of extraction of silk protein fibroin from cocoons and silk glands. In this study non-bioengineered non-mulberry silk gland fibroin protein from tropical tasar silkworm Antheraea mylitta, is regenerated and characterized using 1% (w/v) sodium dodecyl sulfate (SDS). The new technique is important and unique because it uses a mild surfactant for fibroin dissolution and is advantageous over other previous reported techniques using chaotropic salts. Fabricated fibroin films are smooth as confirmed by atomic force microscopy. Circular dichroism spectrometry along with Fourier transformed infrared spectroscopy and X-ray diffraction reveal random coil/alpha-helix conformations in regenerated fibroin which transform to beta-sheets, resulting in crystalline structure and protein insolubility through ethanol treatment. Differential scanning calorimetry shows an increase in glass transition (Tg) temperature and enhanced degradation temperature on alcohol treatment. Enhanced cell attachment and viability of AH927 feline fibroblasts were observed on fibroin matrices. Higher mechanical strength along with controllable water stability of regenerated gland fibroin films make non-mulberry Indian tropical tasar silk gland fibroin protein a promising biomaterial for tissue engineering applications.  相似文献   

15.
Abstract To understand the evolutionary conservation of the gene expression mechanism and secretion machinery between Antheraea and Bombyx fibroins, we introduced the genomic A. yamamai fibroin gene into the domesticated silkworm, B. mori. The spliced A. yamamai fibroin mRNA appeared only in the posterior region of the silk gland of the transgenic silkworm, suggesting that the functions of the fibroin promoter region and the splicing machinery are conserved between these two species. The A. yamamai fibroin protein was detected in the lumen of the silk gland of the transgenic silkworm, albeit at lower levels compared with the B. mori‐type fibroin. We found a strong degeneration of the posterior region of the silk gland of the transgenic silkworm. As a result, the cocoon shell weight was much lower in the transgenic silkworm than in the non‐transgenic line. These results indicate that the promoter function and splicing machinery are well conserved between A. yamamai and B. mori but that the secretion mechanism of fibroin is diversified between the two.  相似文献   

16.
固定化过氧化物酶丝素膜的制备及其性质   总被引:3,自引:1,他引:2  
家蚕丝素经高浓度的中性盐氯化钙溶解后,制成了固定化过氧化物酶丝素膜,对这种酶膜的活性和理化特性作了分析,结果表明这种酶膜的活性高,酶促反应温度范围宽,最适pH5.0-7.0,热稳定性也较游离酶好,这与用溴化锂溶解丝素后制成的固定化过氧化物酶膜相仿.因此,用这种方法制成的丝素膜同样是一种良好的固定化酶的生物材料.  相似文献   

17.
We constructed a new plasmid vector for the production of a modified silk fibroin heavy chain protein (H-chain) in the transgenic silkworm. The plasmid (pHC-null) contained the promoter and the 3' region of a gene encoding the H-chain and the coding regions for the N-terminal domain and the C-terminal domain of the H-chain. For the model protein, we cloned a foreign gene that encoded EGFP between the N-terminal domain and the C-terminal domain in pHC-null and generated transgenic silkworms that produced a modified H-chain, HC-EGFP. Transgenic silkworms produced HC-EGFP in the posterior part of silk gland cells, secreted it into the lumen of the gland, and produced a cocoon with HC-EGFP as part of the fibroin proteins. N-terminal sequencing of HC-EGFP localized the signal sequence cleavage site to between positions A((21)) and N((22)). These results indicate that our new plasmid successfully produced the modified H-chain in a transgenic silkworm.  相似文献   

18.
Ras1(CA) overexpression in the posterior silk gland improves silk yield   总被引:1,自引:0,他引:1  
Ma L  Xu H  Zhu J  Ma S  Liu Y  Jiang RJ  Xia Q  Li S 《Cell research》2011,21(6):934-943
Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm, Bombyx mori, but has reached a plateau during the last decades. For the first time, we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1(CA) oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%, while increasing food consumption by only 20%. Ras activation by Ras1(CA) overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins, up-regulated fibroin mRNA levels, increased total DNA content, and stimulated endoreplication. Moreover, Ras1 activation increased cell and nuclei sizes, enriched subcellular organelles related to protein synthesis, and stimulated ribosome biogenesis for mRNA translation. We conclude that Ras1 activation increases cell size and protein synthesis in the posterior silk gland, leading to silk yield improvement.  相似文献   

19.
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19–25,  https://doi.org/10.1007/s11033-014-3735-z, 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.  相似文献   

20.
There are many kinds of silks spun by silkworms and spiders, which are suitable to study the structure-property relationship for molecular design of fibers with high strength and high elasticity. In this review, we mainly focus on the structural determination of two well-known silk fibroin proteins that are from the domesticated silkworm, Bombyx mori, and the wild silkworm, Samia cynthia ricini, respectively. The structures of B. mori silk fibroin before and after spinning were determined by using an appropriate model peptide, (AG)(15), with several solid-state NMR methods; (13)C two-dimensional spin-diffusion solid-state NMR and rotational echo double resonance (REDOR) NMR techniques along with the quantitative use of the conformation-dependent (13)C CP/MAS chemical shifts. The structure of S. c. ricini silk fibroin before spinning was also determined by using a model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, with the solid-state NMR methods. The transition from the structure of B. mori silk fibroin before spinning to the structure after spinning was studied with molecular dynamics calculation by taking into account several external forces applied to the silk fibroin in the silkworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号