首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigate the anti-cancer activity and mechanism of caudatin, the C-21 steroidal glycosides, on human hepatoma cell line HepG2. The MTT assay and flow cytometry were used to evaluate HepG2 cell proliferation and cell cycle. Annexin-V/PI and DAPI staining were used to investigate cell apoptosis. Western blotting analysis was used to evaluate the expression levels of proteins. It is found that caudatin inhibits HepG2 cell growth and induces of G0/G1 phase arrest in a dose dependent manner, which is associated with a decreased in the expression of cyclinD1 and increased the levels of p21 and p53. HepG2 cells dealing with caudatin showed typical characteristics of apoptosis. Western blotting analysis indicated that the levels of Bcl-2 were down-regulated after caudatin treatment, whereas the expression of Bax was up-regulated. Furthermore, caudatin-induced apoptosis was accompanied by activation of caspase-3, -9, and poly(ADP-Ribose) Polymerase (PARP). Treatment with caudatin also induced phosphorylation of extracellular-signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). These results demonstrate that caudatin inhibits cell proliferation via DNA synthesis reduction and induces caspase-dependent apoptosis in HepG2 cell. Activation of ERK and JNK may be involved in caudatin-induced hepatoma cell apoptosis.  相似文献   

2.
Bcl-x(L) and Bcl-2 inhibit both apoptosis and proliferation. In investigating the relationship between these two functions of Bcl-x(L) and Bcl-2, an analysis of 24 Bcl-x(L) and Bcl-2 mutant alleles, including substitutions at residue Y28 previously reported to selectively abolish the cell cycle activity, showed that cell cycle delay and anti-apoptosis co-segregated in all cases. In determining whether Bcl-2 and Bcl-x(L) act in G(0) or G(1), forward scatter and pyronin Y fluorescence measurements indicated that Bcl-2 and Bcl-x(L) cells arrested more effectively in G(0) than controls, and were delayed in G(0)-G(1) transition. The cell cycle effects of Bcl-2 and Bcl-x(L) were reversed by Bad, a molecule that counters the survival function of Bcl-2 and Bcl-x(L). When control and Bcl-x(L) cells of equivalent size and pyronin Y fluorescence were compared, the kinetics of cell cycle entry were similar, demonstrating that the ability of Bcl-x(L) and Bcl-2 cells to enhance G(0) arrest contributes significantly to cell cycle delay. Our data suggest that cell cycle effects and increased survival both result from intrinsic functions of Bcl-2 and Bcl-x(L).  相似文献   

3.
Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells   总被引:3,自引:0,他引:3  
Kuo PL  Lin CC 《Life sciences》2003,73(2):243-252
The effects of tetrandrine in the human hepatoblastoma G2 (Hep G2) cell line were investigated in this study. The results showed that tetrandrine not only inhibited Hep G2 growth but also induced apoptosis and blocked cell cycle progression in the G1 phase. ELISA assay demonstrated that tetrandrine significantly increased the expression of p53 and p21/WAF1 protein, which caused cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by tetrandrine. Taken together, p53 and Fas/FasL apoptotic system possibly participated in the antiproliferative activity of tetrandrine in Hep G2 cells.  相似文献   

4.
Proteosome inhibitors such as bortezomib (BTZ) have been used to treat muscle wasting in animal models. However, direct effect of BTZ on skeletal muscle cells has not been reported. In the present study, our data showed that C2C12 cells exhibited a dose-dependent decrease in cell viability in response to increasing concentrations of BTZ. Consistent with the results of cell viability, Annexin V/PI analysis showed a significant increase in apoptosis after exposing the cells to BTZ for 24 h. The detection of cleaved caspase-3 further confirmed apoptosis. The apoptosis induced by BTZ was associated with reduced expression of p-ERK. Cell cycle analysis revealed that C2C12 cells underwent G2/M cell cycle arrest when incubated with BTZ for 24 h. Furthermore, BTZ inhibited formation of multinucleated myotubes. The inhibition of myotube formation was accompanied by decreased expression of Myogenin. Our data suggest that BTZ induces cell death and inhibits differentiation of C2C12 cells at clinically relevant doses.  相似文献   

5.
6.
Sun H  Hou H  Lu P  Zhang L  Zhao F  Ge C  Wang T  Yao M  Li J 《PloS one》2012,7(5):e36808
The treatment of human hepatocellular carcinoma (HCC) cell lines with (+)-isocorydine, which was isolated and purified from Papaveraceae sp. plants, resulted in a growth inhibitory effect caused by the induction of G2/M phase cell cycle arrest and apoptosis. We report that isocorydine induces G2/M phase arrest by increasing cyclin B1 and p-CDK1 expression levels, which was caused by decreasing the expression and inhibiting the activation of Cdc25C. The phosphorylation levels of Chk1 and Chk2 were increased after ICD treatment. Furthermore, G2/M arrest induced by ICD can be disrupted by Chk1 siRNA but not by Chk2 siRNA. In addition, isocorydine treatment led to a decrease in the percentage of CD133(+) PLC/PRF/5 cells. Interestingly, isocorydine treatment dramatically decreased the tumorigenicity of SMMC-7721 and Huh7 cells. These findings indicate that isocorydine might be a potential therapeutic drug for the chemotherapeutic treatment of HCC.  相似文献   

7.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   

8.
Vanadium mediated apoptosis and cell cycle arrest in MCF7 cell line   总被引:4,自引:0,他引:4  
Vanadium is a metal widely distributed in the environment. It is also a dietary micronutrient. It has shown insulin mimetic and chemopreventive properties and has been considered as an important pharmacological agent. In this study, we evaluated the apoptogenic role of vanadium on human breast cancer cell line MCF7. Exposure of MCF7 cells to vanadium led to the induction of apoptosis in a dose-dependent manner. Percentage of apoptosis was maximum (42.5%) at the highest non-toxic dose (250 microM). It was found that vanadium treatment brought about a prominent chromatin condensation, cell cycle arrest leading to apoptosis. These apoptosis based assays demonstrate that vanadium has the potential to be developed into an anti-cancer drug in the near future.  相似文献   

9.
J Xu  S Xin  W Du 《FEBS letters》2001,508(3):394-398
Chk2 is a major target of ataxia telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR). Germline mutations in Chk2 have been identified in a subset of patients with Li-Fraumeni syndrome, suggesting that Chk2 is a tumor suppressor gene. To investigate the role of Chk2 in multicellular organisms, a Drosophila chk2 (Dmchk2) mutant was generated. Dmchk2 mutants are viable but show defects in maintaining genome stability and are highly sensitive to ionizing radiation. Interestingly, mutating Dmchk2 completely blocks DNA damage-induced apoptosis and partially blocks DNA damage-induced cell cycle arrest. These results indicate that Chk2 protein plays a crucial role in the DNA damage response pathway mediating cell cycle arrest and apoptosis, and that the ATM-Chk2 pathway is likely conserved in Drosophila.  相似文献   

10.
11.
Activation of the p53 protein can lead to apoptosis and cell cycle arrest. In contrast, activation of the signalling pathway controlled by the Kit receptor tyrosine kinase prevents apoptosis and promotes cell division of a number of different cell types in vivo. We have investigated the consequences of activating the Kit signalling pathway by its ligand Steel factor on these opposing functions of the p53 protein in Friend erythroleukemia cells. A temperature-sensitive p53 allele (Val-135) was introduced into the Friend erythroleukemia cell line (DP-16) which lacks endogenous p53 expression. At 38.5 degrees C, the Val-135 protein maintains a mutant conformation and has no effect on cell growth. At 32 degrees C, the mutant protein assumes wild-type properties and induces these cells to arrest in G1, terminally differentiate, and die by apoptosis. We demonstrate that Steel factor inhibits p53-mediated apoptosis and differentiation but has no effect on p53-mediated G1/S cell cycle arrest. These results demonstrate that Steel factor functions as a cell survival factor in part through the suppression of differentiation and apoptosis induced by p53 and suggest that cell cycle arrest and apoptosis may be separable functions of p53.  相似文献   

12.
It has become evident that AKT inhibitors have great potential in cancer treatment. In this study, we investigate the anticancer activity of MK-2206, a novel AKT inhibitor, on HepG2 hepatocellular carcinoma cell, and to show whether MK-2206 enhances the apoptosis-inducing potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The cell growth inhibition was evaluated by MTT assay and colony formation assay. Cell cycle distribution was assessed by propidium iodide flow cytometry. Apoptosis was determined by AnnexinV-FITC/PI double staining assay and caspase-9, casapse-7, caspase-3, and PARP cleavage. The results of present study showed that MK-2206-induced G1-phase arrest was associated with a marked decrease in the protein expression of cyclin D1 with concomitant induction of p21 and p27. MK-2206-induced apoptosis was characterized by cleavage of a pro-caspase in a concentration-dependent manner. Moreover, the MAP family kinases p38 kinase and JNK were activated by exposure to MK-2206. SB203580, an p38-specific inhibitor, partially blocked MK-2206-induced death of HepG2 cells and caspase activation. A combination of MK-2206 with TRAIL significantly inhibited growth of TRAIL resistant HepG2 cells. Taken together, our findings provide a new insight to better understand anticancer mechanisms of MK-2206, at least in HepG2 cell. Using of MK-2206 as a potent sensitizer to TRAIL-induced apoptotic cell death offers a promising means of enhancing the efficacy of TRAIL-based HCC treatments.  相似文献   

13.
The aim of this study was to assess a possible role of monochloramine (NH2Cl), one of the reactive chlorine species, which induce oxidative stress, on the proliferation of colorectal cancer cell line Caco‐2. At concentrations ranging from 10 to 200 μM, NH2Cl (14–61% inhibition), but not hypochlorous acid, dose‐dependently inhibited the cell viability of Caco‐2 cells. Experiments utilizing methionine (a scavenger of NH2Cl), taurine‐chloramine and glutamine‐chloramine revealed that only NH2Cl affects the cancer cell proliferation among reactive chlorine species, with a relative specificity. Furthermore, flow‐cytometry experiments showed that the anti‐proliferative effect of NH2Cl is partially attributable to both apoptosis and G2/M cell cycle arrest. These results suggest that NH2Cl has the potential to suppress colorectal cancer cell proliferation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Ren K  Shi YJ  Gong JP 《生理科学进展》2007,38(2):136-139
随着肿瘤发病学研究的深入,丝/苏氨酸激酶Pim-2抑制肿瘤细胞凋亡的机制越来越受到关注。通过比较Pim-2与其他癌基因作用机制的异同发现,Pim-2可与Myc协同作用,在多个位点磷酸化Bad,通过NF-κB发挥抗凋亡活性,是与Akt不同的抗凋亡通路。Pim-2强大而广泛的抗凋亡作用是多种肿瘤发生发展的重要机制之一。对Pim-2作用机制的深入研究将有助于阐明其在肿瘤发病中的作用,并有望将其作为肿瘤基因治疗的新靶点。  相似文献   

15.
Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells.   总被引:26,自引:0,他引:26  
Angiostatin which contains the first four kringle domains of plasminogen has been documented to be a potent inhibitor of angiogenesis. More recently, another kringle structure within plasminogen but outside angiostatin, known as kringle 5 (K5), was found to inhibit endothelial cell proliferation and migration. Here, we report the cloning and expression of mouse kringle 5 (rK5) in a bacterial expression system. The protein was purified to homogeneity using a Ni-NTA column. rK5 inhibited both proliferation and migration of endothelial cells with ED50's of 10 nM and < 500 nM, respectively. In addition, we show for the first time that rK5 causes cell cycle arrest and apoptosis, shedding further insight into rK5's mechanism of action. Finally, we show that these actions are endothelial cell specific.  相似文献   

16.
17.
Brassinosteroids (BRs) are plant hormones that appear to be ubiquitous in both lower and higher plants. Recently, we published the first evidence that some natural BRs induce cell growth inhibitory responses in several human cancer cell lines without affecting normal non-tumor cell growth (BJ fibroblasts). The aim of the study presented here was to examine the mechanism of the antiproliferative activity of the natural BRs 28-homocastasterone (28-homoCS) and 24-epibrassinolide (24-epiBL) in human hormone-sensitive and -insensitive (MCF-7 and MDA-MB-468, respectively) breast cancer cell lines. The effects of 6, 12 and 24 h treatments with 28-homoCS and 24-epiBL on cancer cells were surveyed using flow cytometry, Western blotting, TUNEL assays and immunofluorescence analyses. The studied BRs inhibited cell growth and induced blocks in the G1 cell cycle phase. ER-α immunoreactivity was uniformly present in the nuclei of control MCF-7 cells, while cytoplasmic speckles of ER-α immunofluorescence appeared in BR-treated cells (IC50, 24 h). ER-β was relocated to the nuclei following 28-homoCS treatment and found predominantly at the periphery of the nuclei in 24-epiBL-treated cells after 24 h of treatment. These changes were also accompanied by down-regulation of the ERs following BR treatment. In addition, BR application to breast cancer cells resulted in G1 phase arrest. Furthermore, TUNEL staining and double staining with propidium iodide and acridine orange demonstrated the BR-mediated induction of apoptosis in both cell lines, although changes in the expression of apoptosis-related proteins were modulated differently by the BRs in each cell line. The studied BRs seem to exert potent growth inhibitory effects via interactions with the cell cycle machinery, and they could be highly valuable leads for agents for managing breast cancer.  相似文献   

18.
Magnolol (Mag), an effective natural compound isolated from the stem bark of Magnolia officinalis, was found to have the potential for antitumor activity by inducing apoptosis in tumor cells. However, the effect of Mag on renal carcinoma cells and its molecular mechanism are unexplored. Our study provided evidence that Mag induced apoptosis in 786-O and OS-RC-2?cell lines via the mitochondrial pathway and cell cycle arrest. In this work, we found that Mag induced morphological changes and inhibited the proliferation of 786-O and OS-RC-2?cells in a dose- and time-dependent manner but exerted no notable inhibitory effects on normal human renal proximal tubular (HK-2) cells. Treatment with Mag suppressed the migration and invasion ability of renal carcinoma cells. Moreover, Mag caused the openness of mPTP, the accumulation of intracellular ROS and decreased △Ψm, leading to mitochondrial dysfunction. However, pretreatment with the antioxidant N-acetyl cysteine (NAC) reversed the apoptosis induced by Mag and decreased the generation of ROS. In addition, the increased proportion of the G1/G0 phase indicated that Mag caused cell cycle arrest. Further analyses suggested that magnolol-induced apoptosis was related to the abnormal expression of p53, Bax, Bcl-2, cytochrome c and caspase activation. Together, the results above revealed that Mag had antitumor effects in renal carcinoma cells via ROS production as well as cell cycle arrest and the apoptotic mitochondrial pathway was suppressed in part by NAC.  相似文献   

19.
The 1,4-naphthoquinone derivatives bearing 5,7-dimethoxyl moiety were designed, synthesized, and tested as the antitumor agents against five human cancer cell lines (A549, Hela, HepG2, NCI-H460 and HL-60). All the compounds are described herein for the first time. The structure-activity relationships indicated that the presence of chlorine atom at the 2-position was crucial for the antiproliferative activity. Further, the electrochemical properties of the representative compounds (7e, 8e and 9e) were evaluated and a definite correlation between the redox potential and the antiproliferative activity. The most potent compound 9e displayed significant anti-leukemic activity with IC50 value of 3.8?μM in HL-60 cells and weak cytotoxicity with IC50 of 40.7?μM in normal cells WI-38. In mechanistic study for 9e, the increased numbers of apoptotic cells and increased cell population at G2/M phase correlated with ROS generation. Together, our results suggested that the derivatives of 2-chlorine-1,4-naphthoquinone might be the promising candidates for the treatment of promyelocytic leukemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号