首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and μCT to create advanced representation of animal anatomy, including bones, inner organs and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different angles. Given that clinical scanners found in the majority of larger hospitals are fully suitable for these purposes, we encourage biologists to take advantage of these imaging techniques in creation of three-dimensional graphical representations of internal structures.  相似文献   

3.
Three-dimensional digital mouse atlas using high-resolution MRI   总被引:9,自引:0,他引:9  
  相似文献   

4.
Magnetic resonance imaging (MRI) examinations for anatomical studies on collection specimens are becoming more and more frequent. As the presence of metallic objects within the specimens can disturb the acquisition of images and damage both specimens and materials, a simple protocol using radiographs is here proposed to detect these objects in collection specimens before conducting an MRI examination.  相似文献   

5.
Bioluminescent organs that provide ventral camouflage are common among fishes in the meso‐bathypelagic zones of the deep sea. However, the anatomical structures that have been modified to produce light vary substantially among different groups of fishes. Although the anatomical structure and evolutionary derivation of some of these organs have been well studied, the light organs of the naked barracudinas have received little scientific attention. This study describes the anatomy and evolution of bioluminescent organs in the Lestidiidae (naked barracudinas) in the context of a new phylogeny of barracudinas and closely related alepisauroid fishes. Gross and histological examination of bioluminescent organs or homologous structures from preserved museum specimens indicate that the ventral light organ is derived from hepatopancreatic tissue and that the antorbital spot in Lestrolepis is, in fact, a second dermal light organ. In the context of the phylogeny generated from DNA‐sequence data from eight gene fragments (7 nuclear and 1 mitochondrial), a complex liver with a narrow ventral strand running along the ventral midline evolves first in the Lestidiidae. The ventral hepatopancreatic tissue later evolves into a ventral bioluminescent organ in the ancestor of Lestidium and Lestrolepis with the lineage leading to the genus Lestrolepis evolving a dermal antorbital bioluminescent organ, likely for light‐intensity matching. This is the first described hepatopancreatic bioluminescent organ in fishes. J. Morphol. 276:310–318, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
7.
To produce a model to explain the acoustic properties of human speech sounds produced by Grey parrots (Psittacus erithacus) and to compare these properties across species (e.g., with humans, other psittacine and nonpsittacine mimics), researchers need adequate measurements of the chambers that constitute the parrot vocal tract. Various methods can provide such data. Here we compare results for tracheal measurements provided by a) magnetic resonance imaging (MRI) of a live bird, b) caliper measurements of four preserved specimens, and c) electron beam computed tomography (EBCT) of three of these preserved specimens. We find that EBCT scans provide data that correspond to the inner area of the dissected trachea, whereas MRI results correspond to area measurements that include tracheal ring thickness. We briefly discuss how these data may predict formant values for Grey parrot reproduction of human vowels. Our results suggest how noninvasive techniques can be used for cross-species comparisons, including the coevolution of structure and function in avian mimicry. J. Morphol. 238:81–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Individualized current-flow models are needed for precise targeting of brain structures using transcranial electrical or magnetic stimulation (TES/TMS). The same is true for current-source reconstruction in electroencephalography and magnetoencephalography (EEG/MEG). The first step in generating such models is to obtain an accurate segmentation of individual head anatomy, including not only brain but also cerebrospinal fluid (CSF), skull and soft tissues, with a field of view (FOV) that covers the whole head. Currently available automated segmentation tools only provide results for brain tissues, have a limited FOV, and do not guarantee continuity and smoothness of tissues, which is crucially important for accurate current-flow estimates. Here we present a tool that addresses these needs. It is based on a rigorous Bayesian inference framework that combines image intensity model, anatomical prior (atlas) and morphological constraints using Markov random fields (MRF). The method is evaluated on 20 simulated and 8 real head volumes acquired with magnetic resonance imaging (MRI) at 1 mm3 resolution. We find improved surface smoothness and continuity as compared to the segmentation algorithms currently implemented in Statistical Parametric Mapping (SPM). With this tool, accurate and morphologically correct modeling of the whole-head anatomy for individual subjects may now be feasible on a routine basis. Code and data are fully integrated into SPM software tool and are made publicly available. In addition, a review on the MRI segmentation using atlas and the MRF over the last 20 years is also provided, with the general mathematical framework clearly derived.  相似文献   

9.
Middle and inner ear anatomy correlates with neurophysiological responses to a wide range of sound frequencies for species of the Gerbillinae representing generalized, intermediate, and specialized anatomical conditions. Neurophysiological data were recorded from 81 specimens of 13 species representing six genera. Anatomical parameters involved in the process of hearing were correlated with the neurophysiological data to assess the effects of different degrees of anatomical specialization on hearing. The 13 species tested in this manner have graphic curves of auditory sensitivity of remarkably similar disposition over the frequencies tested and to those published for Kangaroo Rats. Ears with anatomical specializations show greater auditory sensitivity. The natural history of the Gerbillinae, particularly the kinds of predators, degree of predation, and habitat is reviewed and utilized to interpret the significance of the degree of auditory specialization in the forms studied and to evaluate the prevailing hypothesis that these specializations enhance the ability of these rodents to survive in open desert situations by detecting and evading predators. The middle ear anatomy of five additional genera and species was also studied. Thus, data on the entire spectrum of gerbilline middle ear morphology provide an evolutionary sequence. Certain anatomical parameters of the organ of Corti show a degree of specialization parallel to that of features of the middle ear. The morphological changes and possible functional roles of these features are considered. A very high correlation exists for degree of specialization and aridity of habitat, thus specialization increases with increasing aridity. This increased specialization may result from more effective predation in open xeric environments. Auditory acuity for a wide range of low frequency sounds augmented by auditory specialization is hence more advantageous here. There does not appear to be selection for hearing at particular frequencies in this range. The peaks of greatest auditory sensitivity appear to correspond to the resonant frequencies of the different components of the middle ear transformer and cavity.  相似文献   

10.
BACKGROUND: Symmelia is a rare birth defect, often combined with severe malformations of the urogenital system and the lower gastrointestinal tract. Additionally, a deformed pelvis and various degrees of separation of the lower limbs are present. CASES: We report the examination findings of 3 autopsy specimens of symmelia using magnetic resonance imaging (MRI) and computed tomography (CT) with 3-dimensional (3D) reconstructions, and conventional X-ray. CONCLUSIONS: MRI and CT with the addition of 3D visualization can be used additionally with autopsy and conventional X-ray images in the investigation of such complex anatomical abnormalities.  相似文献   

11.
Nearly a century of paleontological excavation and analysis from the cave deposits of the Cradle of Humankind UNESCO World Heritage Site in northeastern South Africa underlies much of our understanding of the evolutionary history of hominins, other primates and other mammal lineages in the late Pliocene and early Pleistocene of Africa. As one of few designated fossil repositories, the Plio-Pleistocene Palaeontology Section of the Ditsong National Museum of Natural History (DNMNH; the former Transvaal Museum) curates much of the mammalian faunas recovered from the fossil-rich deposits of major South African hominin-bearing localities, including the holotype and paratype specimens of many primate, carnivore, and other mammal species (Orders Primates, Carnivora, Artiodactyla, Eulipotyphla, Hyracoidea, Lagomorpha, Perissodactyla, and Proboscidea). Here we describe an open-access digital archive of high-resolution, full-color three-dimensional (3D) surface meshes of all 89 non-hominin holotype, paratype and significant mammalian specimens curated in the Plio-Pleistocene Section vault. Surface meshes were generated using a commercial surface scanner (Artec Spider, Artec Group, Luxembourg), are provided in formats that can be opened in both open-source and commercial software, and can be readily downloaded either via an online data repository (MorphoSource) or via direct request from the DNMNH. In addition to providing surface meshes for each specimen, we also provide tomographic data (both computerized tomography [CT] and microfocus [microCT]) for a subset of these fossil specimens. This archive of the DNMNH Plio-Pleistocene collections represents the first research-quality 3D datasets of African mammal fossils to be made openly available. This simultaneously provides the paleontological community with essential baseline information (e.g., updated listing and 3D record of specimens in their current state of preservation) and serves as a single resource of high-resolution digital data that improves collections accessibility, reduces unnecessary duplication of efforts by researchers, and encourages ongoing imaging-based paleobiological research across a range of South African non-hominin fossil faunas. Because the types, paratypes, and key specimens include globally-distributed mammal taxa, this digital archive not only provides 3D morphological data on taxa fundamental to Neogene and Quaternary South African palaeontology, but also lineages critical to research on African, other Old World, and New World paleocommunities. With such a broader impact of the DNMNH 3D data, we hope that establishing open access to this digital archive will encourage other researchers and institutions to provide similar resources that increase accessibility to paleontological collections and support advanced paleobiological analyses.  相似文献   

12.
13.
Magnetic resonance imaging (MRI) is a noninvasive imaging technique that today constitutes one of the main pillars of preclinical and clinical imaging. MRI’s capacity to depict soft tissue in whole specimens ex vivo as well as in vivo, achievable voxel resolutions well below (100 μm)3, and the absence of ionizing radiation have resulted in the broad application of this technique both in human diagnostics and studies involving small animal model organisms. Unfortunately, MRI systems are expensive devices and have so far only sporadically been used to resolve questions in zoology and in particular in zoomorphology. However, the results from two recent studies involving systematic scanning of representative species from a vertebrate group (fishes) as well as an invertebrate taxon (sea urchins) suggest that MRI could in fact be used more widely in zoology. Using novel image data derived from representative species of numerous higher metazoan clades in combination with a comprehensive literature survey, we review and evaluate the potential of MRI for systematic taxon scanning. According to our results, numerous animal groups are suitable for systematic MRI scanning, among them various cnidarian and arthropod taxa, brachiopods, various molluscan taxa, echinoderms, as well as all vertebrate clades. However, various phyla in their entirety cannot be considered suitable for this approach mainly due to their small size (e.g., Kinorhyncha) or their unfavorable shape (e.g., Nematomorpha), while other taxa are prone to produce artifacts associated either with their biology (e.g., Echiura) or their anatomy (e.g., Polyplacophora). In order to initiate further uses of MRI in zoology, we outline the principles underlying various applications of this technique such as the use of contrast agents, in vivo MRI, functional MRI, as well as magnetic resonance spectroscopy. Finally, we discuss how future technical developments might shape the use of MRI for the study of zoological specimens.  相似文献   

14.
Deep sea habitats tend to favor species with low energetic demands, and therefore we predict that deep sea fishes will have behavioral and morphological specializations of the gill ventilatory system to reduce the energetic cost of pumping water across the gills. However, it is difficult to study functional morphology of deep sea fishes due the lack of ability to conduct laboratory experiments with living fishes. For this study, we combined analysis of publicly available video recorded by remote-operated vehicles (ROV) with detailed anatomical study of museum specimens to document the functional morphology of the massive gill chambers that are observed in coffinfishes (Lophiiformes: Chaunacidae). Chaunacids, like other lophiiforms, exhibit highly specialised ventilatory anatomy such as an enlarged branchiostegal apparatus and restricted gill openings, but videos show them using this anatomy in a new and unusual way. We observed eight individuals ventilating extremely slowly at rates of 0.03–0.004 Hz, during which the gill chambers were full yet we saw no inhalation or exhalation for periods of 26 to 245 s. This holding breath behaviour has not been observed in any other fishes and is probably highly energetically efficient. This inflation of the gill chambers also increases body volume by up to 30%, making them more globose and difficult to be taken as prey, much like stomach inflation in pufferfishes (Tetraodontidae). We also used micro computed-tomography (CT) scans to document the enormous branchiostegal rays and associated muscles that support this unique behaviour.  相似文献   

15.
The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.  相似文献   

16.
The structure of two preserved prenatal dolphins were visualized by 3D MR microscopy (isotropic nominal resolution up to 78.1 μm), which is a high-resolution 3D magnetic resonance imaging (MRI) technique. To determine the benefits and limitations of this method, the acquired 3D datasets were segmented manually and compared to histological sections of different specimens in corresponding developmental stages. The MR images visualize the external and internal morphology of both prenatal dolphins in detail. Various organ systems with their main components are clearly documented in the images, allowing a complete segmentation of the specimens and the calculation of volumes and surface areas of different organ systems. Due to its non-invasive character and the detailed imaging within its resolution range, MR microscopy proves to be a valuable tool in developmental biology for the visualization of the inner architecture of rare and delicate museum specimens, such as the small dolphin embryo and fetus examined. In these two prenatal dolphins, the profound structural modifications at the transition from the embryonic to the fetal stage reflect the adaptations of the mammalian bauplan to the requirements of a holaquatic cetacean life-style. However, the developmental pattern and sequence of the emerging tissues and organs in prenatal life do not resemble the hypothesized evolution of the structural and functional adaptations found in the fossil record.  相似文献   

17.
18.
This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases.Key Words: 3D modelling, episcopic microscopy, imaging, embryo, development, gene expression.  相似文献   

19.
Mammalian development is a sophisticated program coordinated by a complex set of genetic and physiological factors. Alterations in anatomy or morphology provide intrinsic measures of progress in or deviations from this program. Emerging three-dimensional imaging methods now allow for more sophisticated morphological assessment than ever before, enabling comprehensive phenotyping, visualization of anatomical context and patterns, automated and quantitative morphological analysis, as well as improved understanding of the developmental time course. Furthermore, these imaging tools are becoming increasingly available and will consequently play a prominent role in elucidating the factors that direct and influence mammalian development.  相似文献   

20.
Extant members of Acipenseridae are generally classified in four genera: Scaphirhynchus, Pseudoscaphirhynchus, Huso and “Acipenser,” which is widely recognized to be paraphyletic. Advances have been made in understanding the systematic relationships among sturgeons based on both morphological and molecular data. Analysis of mitochondrial DNA data suggested that Pseudoscaphirhynchus should be regarded as nested within “Acipenser,” specifically as sister group to the Stellate Sturgeon, A. stellatus. Recent morphological analyses also recovered this relationship, supported by a number of osteological synapomorphies, although these results were based on few and relatively small individuals. Here we describe the anatomy of the skull of A. stellatus based on newly prepared specimens of adult individuals, as well as examination of a large number of preserved individuals representing a broad range of ontogenetic stages. We present new anatomical data from all regions of the skull (dermatocranium, neurocranium, viscerocranium) and offer interpretations of these and other characters. In particular, we describe the allometry in the snout of A. stellatus, which undergoes substantial elongation relative to other sturgeons. Aspects of the skull of A. stellatus are compared to other members of the family, specifically the course of the occipital sensory canal and the morphology and distribution of cranial spines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号