首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taking advantage of the natural synchrony of the S-phase within the plasmodium of Physarum polycephalum, we extracted highly synchronous DNA samples at precise time points in early S-phase. We then separated, by electrophoresis under denaturating conditions, the newly synthesized DNA strands of the nascent chromosomal replicons from the parental DNA template. Using the cDNA clone of the early-replicating LAV1-2 gene as a probe, we could establish by filter hybridization that the elongation rate of the replicon which encompasses this gene is constant, at a rate of 1 kb/min during the first 30 min of S-phase. The smallest replication intermediate (RI) that we have detected by probing with the LAV1-2 cDNA was 5 kb long, suggesting that the LAV1-2 gene and its origin of replication are closely associated within the chromosome. This procedure should facilitate the mapping of replication origins within the genome of Physarum.  相似文献   

2.
J A D'Anna  R A Tobey 《Biochemistry》1989,28(7):2895-2902
Previous investigations showed that inhibition of DNA synthesis by hydroxyurea, aphidicolin, or 5-fluorodeoxyuridine produced large changes in the composition and nucleosome repeat lengths of bulk chromatin. Here we report results of investigations to determine whether the changes in nucleosome repeat lengths might be localized in the initiated replicons, as postulated [D'Anna, J. A., & Prentice, D. A. (1983) Biochemistry 22, 5631-5640]. In most experiments, Chinese hamster (line CHO) cells were synchronized in G1, or they were synchronized in early S phase by allowing G1 cells to enter S phase in medium containing 1 mM hydroxyurea or 5 micrograms mL-1 aphidicolin, a procedure believed to produce an accumulation of initiated replicons that arise from normally early replicating DNA. Measurements of nucleosome repeat lengths of bulk chromatin, the early replicating unexpressed metallothionein II (MTII) gene region, and a later replicating repeated sequence indicate that the changes in repeat lengths occur preferentially in the early replicating MTII gene region as G1 cells enter and become synchronized in early S phase. During that time, the MTII gene region is not replicated nor is there any evidence for induction of MTII messenger RNA. Thus, the results are consistent with the hypothesis that changes in chromatin structure occur preferentially in the early replicating (presumably initiated) replicons at initiation or that changes in chromatin structure can precede replication during inhibition of DNA synthesis. The shortened repeat lengths that precede MTII replication are, potentially, reversible, because they become elongated when the synchronized early S-phase cells are released to resume cell cycle progression.  相似文献   

3.
Taking advantage of the natural synchrony of the S-phase within the plasmodium of Physarum polycephalum, we extracted highly synchronous DNA samples at precise time points in early S-phase. We then separated, by electrophoresis under denaturating conditions, the newly synthesized DNA strands of the nascent chromosomal replicons from the parental DNA template. Using the cDNA clone of the early-replicating LAV1-2 gene as a probe, we could establish by filter hybridization that the elongation rate of the replicon which encompasses this gene is constant, at a rate of 1 kb/min during the first 30 min of S-phase. The smallest replication intermediate (RI) that we have detected by probing with the LAV1-2 cDNA was 5 kb long, suggesting that the LAV1-2 gene and its origin of replication are closely associated within the chromosome. This procedure should facilitate the mapping of replication origins within the genome of Physarum.  相似文献   

4.
5.
6.
7.
We have tested the hypothesis which stipulates that only early-replicating genes are capable of expression. Within one cell type of Physarum - the plasmodium - we defined the temporal order of replication of 10 genes which were known to be variably expressed in 4 different developmental stages of the Physarum life cycle. Southern analysis of density-labeled, bromodesoxyuridine-substituted DNA reveals that 4 genes presumably inactive within the plasmodium, were not restricted to any temporal compartment of S-phase: 1 is replicated in early S-phase, 2 in mid S-phase and 1 in late S-phase. On the other hand, 4 out of 6 active genes analysed are duplicated early, with the first 30% of the genome. Surprisingly, the two others active genes are replicated late in S-phase. By gene-dosage analysis, based on quantitation of hybridization signals from early and late replicating genes throughout S-phase, we could pinpoint the replication of one of these two genes at a stage where 80-85% of the genome has duplicated. Our results demonstrate that late replication during S-phase does not preclude gene activity.  相似文献   

8.
J J Wille  Jr 《Nucleic acids research》1977,4(9):3143-3154
Synchronous plasmodia of Physarum polycephalum were pulse-labeled with 3H-thymidine in early or late portions of the S-phase, and the binding capacity of the replicated DNA for isochronous S-phase plasmodial proteins assessed by nitrocellulose filter binding assay. Replication units replicating during the first one-third of the S-phase preferentially bind cytosol proteins present in plasmodia engaged in early S DNA replication, while late S replicating DNA exhibits a corresponding preferential binding of plasmodial proteins present only in late S plasmodia. Temporally-characteristic nascent replication units were isolated by Hydroxylapatite column chromatography and were found to contain binding sites for isochronous proteins.  相似文献   

9.
10.
Summary Tritiated -amanitin has been used as a specific and sensitive probe to estimate the number of RNA polymerase B molecules in isolated nuclei, chromatin and nucleoids, obtained from macroplasmodia ofPhysarum polycephalum. During mitosis (metaphase±10 min) there is at least 10-fold less RNA polymerase B than at all phases of the cell cycle, even if DNA replication has been blocked in vivo. It is concluded that many of the RNA polymerase B molecules leave the chromatin during decondensation of the chromosomes in telophase of the synchronous nuclear division ofPhysarum.  相似文献   

11.
12.
13.
14.
15.
16.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

17.
18.
19.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

20.
Transmission electron microscopic techniques were used to study the spatial distribution of replicons and the ultrastructure of chromatin in the S phase genome of cellular blastoderm Drosophila melanogaster embryos. We observed chromatin exhibiting distinct bifurcations along each fiber during the initial 20 min of the first cell cycle of blastulation. We interpreted the “bubble-like” configurations produced by adjacent bifurcations as intermediate structures in chromatin replication (that is, replicons). We observed homologous ribonucleoprotein (RNP) fiber arrays on both chromatid arms within some replicons, implying DNA sequence homology and reinforcing the identification of such arms as daughter chromatid fibers. We did not observe replicon configurations on chromatin obtained from embryos staged at more than 20 min into cellular blastulation. Daughter chromatid fibers, however, were identified by the presence of identical RNP fiber arrays on chromatid strands arranged in parallel on the electron microscope grid.We examined the distribution of replicon structures on the cellular blastoderm genome and compared it with electron microscopic data on DNA replication in cleavage embryos (Blumenthal, Kriegstein and Hogness, 1973). S phase is completed in slightly < 4 min during cleavage, or approximately one fifth the time required for DNA synthesis in cellular blastoderm embryos. The mean distance separating adjacent replication origins at cellularization was estimated to be 10.6 kilobases (kb), a value 35% greater than the 7.9 kb inter-origin average determined for cleavage embryos. In contrast to the near-simultaneous activation of replication origins during cleavage replication, we observed that replication origins are not activated synchronously at cellular blastulation. We concluded that the marked increase in the duration of S phase is effected by a reduction in the frequency of replication activation events which occur asynchronously during genome replication at cellularization.We found that the ultrastructure of newly replicated chromatin exhibited a morphology indistinguishable from nucleosomal chromatin. Unreplicated chromatin fibers separating adjacent replicons also exhibit spherical subunits. We inferred that the spherical structures on replicating chromatin are nucleosomes and concluded that histones are not disassociated from the DNA significantly prior to DNA replication, and that a very rapid reassociation of nucleosomes occurs on both daughter DNA molecules following replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号