首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose ofthis study was to determine whether enzymatic and histochemicalcharacteristics of human skeletal muscle are altered with aging.Tissues from the vastus lateralis (VL) and gastrocnemius were analyzedfor citrate synthase (CS) activity and fiber type in 55 sedentary men(age range 18-80 yr). In this population, CS activity in thegastrocnemius was negatively related to age(r = 0.32,P < 0.05); there was no relationshipin the VL. Treadmill-determined maximal oxygen consumption waspositively related (r = 0.40, P < 0.05) to CS in the gastrocnemiusbut not in the VL. CS activity in the gastrocnemius was 24% lower inthe oldest (60 yr, n = 10) vs. theyoungest (30 yr; n = 12) men; therewas no change in CS activity in the VL with aging. No changes in fibertype were evident with age in either muscle. These data suggest areduction in oxidative enzyme activity in human skeletal muscle withthe aging process; this relationship may be muscle-group specific.

  相似文献   

2.
McAllister, Richard M., Brian L. Reiter, John F. Amann, andM. Harold Laughlin. Skeletal muscle biochemical adaptations toexercise training in miniature swine. J. Appl.Physiol. 82(6): 1862-1868, 1997.The primarypurpose of this study was to test the hypothesis that enduranceexercise training induces increased oxidative capacity in porcineskeletal muscle. To test this hypothesis, female miniature swine wereeither trained by treadmill running 5 days/wk over 16-20 wk (Trn;n = 35) or pen confined (Sed;n = 33). Myocardialhypertrophy, lower heart rates during submaximal stages of a maximaltreadmill running test, and increased running time to exhaustion duringthat test were indicative of training efficacy. A variety of skeletalmuscles were sampled and subsequently assayed for the enzymes citratesynthase (CS), 3-hydroxyacyl-CoA dehydrogenase, and lactatedehydrogenase and for antioxidant enzymes. Fiber type composition of arepresentative muscle was also determined histochemically. The largestincrease in CS activity (62%) was found in the gluteus maximus muscle(Sed, 14.7 ± 1.1 µmol · min1 · g1;Trn, 23.9 ± 1.0; P < 0.0005).Muscles exhibiting increased CS activity, however, were locatedprimarily in the forelimb; ankle and knee extensor and respiratorymuscles were unchanged with training. Only two muscles exhibited higher3-hydroxyacyl-CoA dehydrogenase activity in Trn compared with Sed.Lactate dehydrogenase activity was unchanged with training, as wereactivities of antioxidant enzymes. Histochemical analysis of thetriceps brachii muscle (long head) revealed lower type IIB fibernumbers in Trn (Sed, 42 ± 6%; Trn, 10 ± 4;P < 0.01) and greater type IID/Xfiber numbers (Sed, 11 ± 2; Trn, 22 ± 3;P < 0.025). These findingsindicate that porcine skeletal muscle adapts to endurance exercisetraining in a manner similar to muscle of humans and other animalmodels, with increased oxidative capacity. Specificmuscles exhibiting these adaptations, however, differ between theminiature swine and other species.

  相似文献   

3.
Stump, Craig S., Charles M. Tipton, and Erik J. Henriksen.Muscle adaptations to hindlimb suspension in mature and oldFischer 344 rats. J. Appl. Physiol.82(6): 1875-1881, 1997.We examined skeletal and cardiac muscleresponses of mature (8 mo) and old (23 mo) male Fischer 344 rats to 14 days of hindlimb suspension. Hexokinase (HK) and citrate synthase (CS)activities and GLUT-4 glucose transporter protein level, which arecoregulated in many instances of altered neuromuscular activity, wereanalyzed in soleus (Sol), plantaris (Pl), tibialis anterior (TA),extensor digitorum longus (EDL), and left ventricle. Protein contentwas significantly (P < 0.05) lowerin all four hindlimb muscles after suspension compared with controls inboth mature (21-44%) and old (17-43%) rats. Old ratsexhibited significantly lower CS activities than mature rats for theSol, Pl, and TA. HK activities were significantly lower in the old ratsfor the Pl (19%) and TA (33%), and GLUT-4 levels were lower in theold rats for the TA (38%) and EDL (24%) compared with the maturerats. Old age was also associated with a decrease in CS activity (12%)and an increase in HK activity (14%) in cardiac muscle. CS activitieswere lower in the Sol (20%) and EDL (18%) muscles from maturesuspended rats and in the Sol (25%), Pl (27%), and EDL (25%) musclesfrom old suspended rats compared with corresponding controls. However,suspension was associated with significantly higher HK activities forall four hindlimb muscles examined, in both old (16-57%) andmature (10-43%) rats, and higher GLUT-4 concentrations in the TAmuscles of the old rats (68%) but not the mature rats. These resultsindicate that old age is associated with decreased CS and HK activities and GLUT-4 protein concentration for several rat hindlimb muscles, andthese variables are not coregulated during suspension. Finally, old ratskeletal muscle appears to respond to suspension to a similar orgreater degree than mature rat muscle responds.

  相似文献   

4.
Muscle performance and enzymatic adaptations to sprint interval training   总被引:3,自引:0,他引:3  
Our purpose was to examine the effects of sprintinterval training on muscle glycolytic and oxidative enzyme activityand exercise performance. Twelve healthy men (22 ± 2 yr of age)underwent intense interval training on a cycle ergometer for 7 wk.Training consisted of 30-s maximum sprint efforts (Wingate protocol)interspersed by 2-4 min of recovery, performed three times perweek. The program began with four intervals with 4 min of recovery persession in week 1 and progressed to 10 intervals with 2.5 min of recovery per session by week7. Peak power output and total work over repeated maximal 30-s efforts and maximal oxygen consumption(O2 max) weremeasured before and after the training program. Needle biopsies weretaken from vastus lateralis of nine subjects before and after theprogram and assayed for the maximal activity of hexokinase, totalglycogen phosphorylase, phosphofructokinase, lactate dehydrogenase, citrate synthase, succinate dehydrogenase, malate dehydrogenase, and3-hydroxyacyl-CoA dehydrogenase. The training program resulted insignificant increases in peak power output, total work over 30 s, andO2 max. Maximalenzyme activity of hexokinase, phosphofructokinase, citrate synthase,succinate dehydrogenase, and malate dehydrogenase was alsosignificantly (P < 0.05) higherafter training. It was concluded that relatively brief but intensesprint training can result in an increase in both glycolytic andoxidative enzyme activity, maximum short-term power output, andO2 max.

  相似文献   

5.
Compared with the lean(Fa/) genotype, obese(fa/fa) Zucker rats have arelative deficiency of muscle phospholipid arachidonate, and skeletalmuscle arachidonate in humans is positively correlated with insulinsensitivity. To assess the hypothesis that the positive effects ofexercise training on insulin sensitivity are mediated by increasedmuscle arachidonate, we randomized 20 lean and 20 obese weanling maleZucker rats to sedentary or treadmill exercise groups. After 9 wk,fasting serum, three skeletal muscles (white gastrocnemius, soleus, andextensor digitorum longus), and heart were obtained. Fasting insulinwas halved by exercise training in the obese rat. In whitegastrocnemius and extensor digitorum longus (fast-twitch muscles), butnot in soleus (a slow-twitch muscle) or heart, phospholipidarachidonate was lower in obese than in lean rats(P < 0.001). In all muscles,exercise in the obese rats reduced arachidonate(P < 0.03, by ANOVA contrast). Weconclude that improved insulin sensitivity with exercise in the obesegenotype is not mediated by increased muscle arachidonate and thatreduced muscle arachidonate in obese Zucker rats is unique tofast-twitch muscles.

  相似文献   

6.
Kent-Braun, J. A., A. V. Ng, M. Castro, M. W. Weiner, D. Gelinas, G. A. Dudley, and R. G. Miller. Strength, skeletal musclecomposition and enzyme activity in multiple sclerosis. J. Appl. Physiol. 83(6):1998-2004, 1997.This study examined functional, biochemical, andmorphological characteristics of skeletal muscle in nine multiplesclerosis (MS) patients and eight healthy controls in an effort toascertain whether intramuscular adaptations could account for excessivefatigue in this disease. Analyses of biopsies of the tibialis anteriormuscle showed that there were fewer type I fibers (66 ± 6 vs. 76 ± 6%), and that fibers of all types were smaller (average26%) and had lower succinic dehydrogenase (SDH; average40%) and SDH/-glycerol-phosphate dehydrogenase (GPDH) butnot GPDH activities in MS vs. control subjects, suggesting that musclein this disease is smaller and relies more on anaerobic thanaerobic-oxidative energy supply than does muscle of healthyindividuals. Maximal voluntary isometric force fordorsiflexion was associated with both average fiber cross-sectionalarea (r = 0.71, P = 0.005) and muscle fat-free cross-sectional area by magnetic resonance imaging(r = 0.80, P < 0.001). Physical activity,assessed by accelerometer, was associated with average fiber SDH/GPDH(r = 0.78, P = 0.008). There was a tendency forsymptomatic fatigue to be inversely associated with average fiber SDHactivity (r = 0.57,P = 0.068). The results of thisstudy suggest that the inherent characteristics of skeletal musclefibers per se and of skeletal muscle as a whole are altered in thedirection of disuse in MS. They also suggest that changes in skeletalmuscle in MS may significantly affect function.

  相似文献   

7.
Colberg, Sheri R., James M. Hagberg, Steve D. McCole, JosephM. Zmuda, Paul D. Thompson, and David E. Kelley. Utilization ofglycogen but not plasma glucose is reduced in individuals with NIDDMduring mild-intensity exercise. J. Appl.Physiol. 81(4): 2027-2033, 1996.To test thehypothesis that substrate utilization during mild-intensity exercisediffers in non-insulin-dependent diabetes mellitus (NIDDM) comparedwith nondiabetic subjects, seven lean healthy subjects (L), seven obesehealthy subjects (O), and seven individuals with NIDDM were studiedduring 40 min of mild-intensity cycling (40% of peakO2 uptake). Systemic utilization of plasma glucose (Glc Rd) was determined by using isotope dilution methods. Gas exchange was measured to determine rates of carbohydrate (CHO) and lipid oxidation. During exercise, when CHOoxidation was greater than Glc Rd, the net oxidation of glycogen wascalculated as the difference: CHO oxidation  Glc Rd. Duringmild-intensity cycling, the respiratory exchange ratio was similaracross groups (0.87 ± 0.02, 0.85 ± 0.02, and 0.86 ± 0.01 inL, O, and NIDDM subjects, respectively), and CHO oxidation accountedfor one-half of total energy expenditure during exercise. Glc Rdincreased during exercise and was greatest in subjects with NIDDM (3.0 ± 0.2, 2.9 ± 0.2, and 4.5 ± 0.4 ml · kg1 · min1in L, O, and NIDDM subjects, respectively,P < 0.05), yet Glc Rd wasless than CHO oxidation during exercise, indicating net oxidation ofglycogen. Glycogen oxidation was greater in L and O than in NIDDMsubjects (3.4 ± 1.0, 2.5 ± 0.9, and 1.7 ± 0.8 ml · kg1 · min1;P < 0.05). In summary, duringmild-intensity exercise, NIDDM subjects have an increased Glc Rd and adecreased oxidation of muscle glycogen.

  相似文献   

8.
Skeletal muscle oxidative enzyme capacity is impaired inpatients suffering from emphysema and chronic obstructive pulmonary disease. This effect may result as a consequence of the physiological derangements because of the emphysema condition or, alternatively, as aconsequence of the reduced physical activity level in these patients.To explore this issue, citrate synthase (CS) activity was measured inselected hindlimb muscles and the diaphragm of Syrian Golden hamsters 6 mo after intratracheal instillation of either saline (Con,n = 7) or elastase [emphysema(Emp); 25 units/100 g body weight, n = 8]. Activity level was monitored, and no difference betweengroups was found. Excised lung volume increased with emphysema (Con,1.5 ± 0.3 g; Emp, 3.0 ± 0.3 g,P < 0.002). Emphysema significantly reduced CS activity in the gastrocnemius (Con, 45.1 ± 2.0; Emp, 39.2 ± 0.8 µmol · min1 · gwet wt1,P < 0.05) and vastus lateralis (Con,48.5 ± 1.5; Emp, 44.9 ± 0.8 µmol · min1 · gwet wt1,P < 0.05) but not in the plantaris(Con, 47.4 ± 3.9; Emp, 48.0 ± 2.1 µmol · min1 · gwet wt1,P < 0.05) muscle. In contrast, CSactivity increased in the costal (Con, 61.1 ± 1.8; Emp, 65.1 ± 1.5 µmol · min1 · gwet wt1,P < 0.05) and crural (Con, 58.5 ± 2.0; Emp, 65.7 ± 2.2 µmol · min1 · gwet wt1, P < 0.05) regions of the diaphragm. These data indicate that emphysema perse can induce decrements in the oxidative capacity of certainnonventilatory skeletal muscles that may contribute to exerciselimitations in the emphysematous patient.

  相似文献   

9.
The aim of this study was to investigate dietaryprotein-induced changes in whole body leucine turnover and oxidationand in skeletal muscle branched chain 2-oxo acid dehydrogenase (BCOADH) activity, at rest and during exercise. Postabsorptive subjects receiveda primed constant infusion ofL-[1-13C,15N]leucinefor 6 h, after previous consumption of a high- (HP; 1.8 g · kg1 · day1,n = 8) or a low-protein diet (LP; 0.7 g · kg1 · day1,n = 8) for 7 days. The subjects werestudied at rest for 2 h, during 2-h exercise at 60% maximum oxygenconsumption, then again for 2 h at rest. Exercise induced a doubling ofboth leucine oxidation from 20 µmol · kg1 · h1and BCOADH percent activation from 7% in all subjects. Leucine oxidation was greater before (+46%) and during (+40%,P < 0.05) the first hour of exercisein subjects consuming the HP rather than the LP diet, but there was noadditional change in muscle BCOADH activity. The results suggest thatleucine oxidation was increased by previous ingestion of an HP diet,attributable to an increase in leucine availability rather than to astimulation of the skeletal muscle BCOADH activity.

  相似文献   

10.
Proctor, David N., and Michael J. Joyner. Skeletalmuscle mass and the reduction ofO2 max in trainedolder subjects. J. Appl. Physiol.82(5): 1411-1415, 1997.The role of skeletal muscle mass in theage-associated decline in maximalO2 uptake (O2 max) is poorlydefined because of confounding changes in muscle oxidative capacity andin body fat and the difficulty of quantifying active muscle mass duringexercise. We attempted to clarify these issues byexamining the relationship between several indexes of muscle mass, asestimated by using dual-energy X-ray absorptiometry and treadmillO2 max in 32 chronically endurance-trained subjects from four groups(n = 8/group): young men(20-30 yr), older men (56-72 yr), young women(19-31 yr), and older women (51-72 yr).O2 max per kilogrambody mass was 26 and 22% lower in the older men (45.9 vs. 62.0 ml · kg1 · min1)and older women (40.0 vs. 51.5 ml · kg1 · min1).These age differences were reduced to 14 and 13%, respectively, whenO2 max was expressedper kilogram of appendicular muscle. When appropriately adjusted forage and gender differences in appendicular muscle mass by analysis ofcovariance, whole body O2 max was 0.50 ± 0.09 l/min less (P < 0.001) in theolder subjects. This effect was similar in both genders.These findings suggest that the reducedO2 max seen in highlytrained older men and women relative to their younger counterparts isdue, in part, to a reduced aerobic capacity per kilogram of activemuscle independent of age-associated changes in body composition, i.e.,replacement of muscle tissue by fat. Because skeletal muscleadaptations to endurance training can be well maintained in oldersubjects, the reduced aerobic capacity per kilogram of muscle likelyresults from age-associated reductions in maximalO2 delivery (cardiac outputand/or muscle blood flow).

  相似文献   

11.
Lang, Chim C., Don B. Chomsky, Glenn Rayos, T. K. Yeoh, andJohn R. Wilson. Skeletal muscle mass and exercise performance instable ambulatory patients with heart failure. J. Appl. Physiol. 82(1): 257-261, 1997.The purposeof this study was to determine whether skeletal muscle atrophy limitsthe maximal exercise capacity of stable ambulatory patients with heartfailure. Body composition and maximal exercise capacity were measuredin 100 stable ambulatory patients with heart failure. Body compositionwas assessed by using dual-energy X-ray absorption. Peak exerciseoxygen consumption (O2 peak) and theanaerobic threshold were measured by using a Naughton treadmillprotocol and a Medical GraphicsCardioO2 System.O2 peak averaged 13.4 ± 3.3 ml · min1 · kg1or 43 ± 12% of normal. Lean body mass averaged 52.9 ± 10.5 kg and leg lean mass 16.5 ± 3.6 kg. Leg lean mass correlated linearly with O2 peak(r= 0.68, P < 0.01), suggesting that exerciseperformance is influenced by skeletal muscle mass. However, lean bodymass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting thisconclusion. These findings suggest that exercise intolerance in stableambulatory patients with heart failure is not due to skeletal muscleatrophy.

  相似文献   

12.
Connor, Michael K., and David A. Hood. Effect ofmicrogravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J. Appl.Physiol. 84(2): 593-598, 1998.The purpose ofthis study was to examine the expression of nuclear and mitochondrialgenes in cardiac and skeletal muscle (triceps brachii) in response toshort-duration microgravity exposure. Six adult male rats were exposedto microgravity for 6 days and were compared with six ground-basedcontrol animals. We observed a significant 32% increase in heartmalate dehydrogenase (MDH) enzyme activity, which was accompanied by a62% elevation in heart MDH mRNA levels after microgravity exposure.Despite modest elevations in the mRNAs encoding subunits III, IV, andVIc as well as a 2.2-fold higher subunit IV protein content afterexposure to microgravity, heart cytochromec oxidase (CytOx) enzyme activityremained unchanged. In skeletal muscle, MDH expression was unaffectedby microgravity, but CytOx activity was significantly reduced 41% bymicrogravity, whereas subunit III, IV, and VIc mRNA levels and subunitIV protein levels were unaltered. Thus tissue-specific (i.e., heart vs.skeletal muscle) differences exist in the regulation of nuclear-encoded mitochondrial proteins in response to microgravity. In addition, theexpression of nuclear-encoded proteins such as CytOx subunit IV andexpression of MDH are differentially regulated within a tissue. Ourdata also illustrate that the heart undergoes previously unidentifiedmitochondrial adaptations in response to short-term microgravityconditions more dramatic than those evident in skeletal muscle. Furtherstudies evaluating the functional consequences of these adaptations inthe heart, as well as those designed to measure protein turnover, arewarranted in response to microgravity.

  相似文献   

13.
Gene expression inthe stretched chicken patagialis (Pat) muscle has not been extensivelyexamined. This study's purpose was to determine the Pat muscle'sexpression pattern of serum response factor (SRF), skeletal -actin,and MyoD mRNAs after 3 days (onset of stretch), 6 days (end of firstweek of rapid growth), and 14 days (slowed rate of stretch-inducedgrowth) of stretch. SRF mRNA demonstrated two species (B1 and B2), withB2 being more prevalent in the predominantly fast-twitch Pat muscle,compared with the slow-tonic muscle. Stretch overload increased B1 andB2 SRF mRNA concentrations, and the increase in B1 SRF mRNAconcentration was greater at day 6 compared with days 3 or14. MyoD mRNA concentration wasgreater in 3-day-stretched Pat muscles, compared withdays 6 or14 . Skeletal -actin mRNAconcentration was not changed during the study. Gel mobility shiftassays demonstrated that SRF binding with serum response element 1 ofthe skeletal -actin promoter had no altered binding patterns from6-day-stretched Pat nuclear extracts. It appears that SRF and MyoDmRNAs are induced in the stretch-overloaded Pat muscle but at differenttime points.

  相似文献   

14.
To examinethe effect of endurance training (6 wk of treadmill running) onregional mitochondrial adaptations within skeletal muscle,subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria wereisolated from trained and control rat hindlimb muscles.Mitochondrial oxygen consumption(O2) was measuredpolarographically by using the following substrates: 1 mM pyruvate + 1 mM malate (P+M), 10 mM 2-oxoglutarate, 45 µMpalmitoyl-DL-carnitine + 1 mMmalate, and 10 mM glutamate. Spectrophotometric assays ofcytochrome-c reductase andNAD-specific isocitrate dehydrogenase (IDH) activity were alsoperformed. Maximal (state III) and resting (state IV) O2 were lower in SS than inIMF mitochondria in both trained and control groups. In SSmitochondria, training elicited significant 36 and 20% increases instate III O2 with P+M andglutamate, respectively. In IMF mitochondria, training resulted in asmaller (20%), yet significant, increase in state IIIO2 with P+M as a substrate,whereas state IIIO2 increased 33 and 27% with 2-oxoglutarate andpalmitoyl-DL-carnitine + malate,respectively. Within groups,cytochrome-c reductase and IDHactivities were lower in SS when compared with IMF mitochondria.Training increased succinate-cytochrome-c reductase inboth SS (30%) and IMF mitochondria (28%). IDH activity increased 32%in the trained IMF but remained unchanged in SS mitochondria. Weconclude that endurance training promotes substantial changes inprotein stoichiometry and composition of both SS and IMF mitochondria.

  相似文献   

15.
Hellsten, Ylva, Fred S. Apple, and Bertil Sjödin.Effect of sprint cycle training on activities of antioxidantenzymes in human skeletal muscle. J. Appl.Physiol. 81(4): 1484-1487, 1996.The effect ofintermittent sprint cycle training on the level of muscle antioxidantenzyme protection was investigated. Resting muscle biopsies, obtainedbefore and after 6 wk of training and 3, 24, and 72 h after the finalsession of an additional 1 wk of more frequent training, were analyzedfor activities of the antioxidant enzymes glutathione peroxidase (GPX),glutathione reductase (GR), and superoxide dismutase (SOD). Activitiesof several muscle metabolic enzymes were determined to assess the effectiveness of the training. After the first 6-wk training period, nochange in GPX, GR, or SOD was observed, but after the 7th week oftraining there was an increase in GPX from 120 ± 12 (SE) to 164 ± 24 µmol · min1 · gdry wt1(P < 0.05) and in GR from 10.8 ± 0.8 to 16.8 ± 2.4 µmol · min1 · gdry wt1(P < 0.05). There was no significantchange in SOD. Sprint cycle training induced a significant(P < 0.05) elevation in the activity of phosphofructokinase and creatine kinase, implying an enhanced anaerobic capacity in the trained muscle. The present studydemonstrates that intermittent sprint cycle training that induces anenhanced capacity for anaerobic energy generation also improves thelevel of antioxidant protection in the muscle.

  相似文献   

16.
Delp, Michael D., Changping Duan, John P. Mattson, andTimothy I. Musch. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure.J. Appl. Physiol. 83(4):1291-1299, 1997.One of the primary consequences of leftventricular dysfunction (LVD) after myocardial infarction is adecrement in exercise capacity. Several factors have been hypothesizedto account for this decrement, including alterations in skeletal musclemetabolism and aerobic capacity. The purpose of this study was todetermine whether LVD-induced alterations in skeletal muscle enzymeactivities, fiber composition, and fiber size are1) generalized in muscles orspecific to muscles composed primarily of a given fiber type and2) related to the severity of theLVD. Female Wistar rats were divided into three groups: sham-operatedcontrols (n = 13) and rats withmoderate (n = 10) and severe(n = 7) LVD. LVD was surgicallyinduced by ligating the left main coronary artery and resulted inelevations (P < 0.05) in leftventricular end-diastolic pressure (sham, 5 ± 1 mmHg; moderate LVD,11 ± 1 mmHg; severe LVD, 25 ± 1 mmHg). Moderate LVDdecreased the activities of phosphofructokinase (PFK) and citratesynthase in one muscle composed of type IIB fibers but did not modifyfiber composition or size of any muscle studied. However, severe LVDdiminished the activity of enzymes involved in terminal and-oxidation in muscles composed primarily of type I fibers, type IIAfibers, and type IIB fibers. In addition, severe LVD induced areduction in the activity of PFK in type IIB muscle, a 10% reductionin the percentage of type IID/X fibers, and a corresponding increase inthe portion of type IIB fibers. Atrophy of type I fibers, type IIAfibers, and/or type IIB fibers occurred in soleus and plantarismuscles of rats with severe LVD. These data indicate that rats withsevere LVD after myocardial infarction exhibit1) decrements in mitochondrialenzyme activities independent of muscle fiber composition,2) a reduction in PFK activity in type IIB muscle, 3) transformationof type IID/X to type IIB fibers, and4) atrophy of type I, IIA, and IIBfibers.

  相似文献   

17.
Isnard, Richard, Philippe Lechat, Hanna Kalotka, HafidaChikr, Serge Fitoussi, Joseph Salloum, Jean-Louis Golmard, Daniel Thomas, and Michel Komajda. Muscular blood flow response to submaximal leg exercise in normal subjects and in patients with heartfailure. J. Appl. Physiol. 81(6):2571-2579, 1996.Blood flow to working skeletal muscle is usuallyreduced during exercise in patients with congestive heart failure. Anintrinsic impairment of skeletal muscle vasodilatory capacity has beensuspected as a mechanism of this muscle underperfusion during maximalexercise, but its role during submaximal exercise remains unclear.Therefore, we studied by transcutaneous Doppler ultrasonography thearterial blood flow in the common femoral artery at rest and during asubmaximal bicycle exercise in 12 normal subjects and in 30 patientswith heart failure. Leg blood flow was lower in patientsthan in control subjects at rest [0.29 ± 0.14 (SD) vs. 0.45 ± 0.14 l/min, P < 0.01], at absolute powers and at the same relative power (2.17 ± 1.06 vs. 4.39 ± 1.4 l/min, P < 0.001). Because mean arterial pressure was maintained, leg vascularresistance was higher in patients than in control subjects at rest (407 ± 187 vs. 247 ± 71 mmHg · l1 · min,P < 0.01) and at thesame relative power (73 ± 49 vs. 31 ± 13 mmHg · l1 · min,P < 0.01) but not at absolutepowers. Although the magnitude of increase in leg blood flow correctedfor power was similar in both groups (31 ± 10 vs. 34 ± 10 ml · min1 · W1),the magnitude of decrease of leg vascular resistance corrected forpower was higher in patients than in control subjects (5.9 ± 3.3 vs. 1.9 ± 0.94 mmHg · l1 · min · W1,P < 0.001). These results suggestthat the ability of skeletal muscle vascular resistance to decrease isnot impaired and that intrinsic vascular abnormalities do not limitvasodilator response to submaximal exercise in patients with heartfailure.

  相似文献   

18.
Rasmussen, B. B., and W. W. Winder. Effectof exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoAcarboxylase. J. Appl. Physiol. 83(4):1104-1109, 1997.Malonyl-CoA is synthesized by acetyl-CoAcarboxylase (ACC) and is an inhibitor of fatty acid oxidation. Exerciseinduces a decline in skeletal muscle malonyl-CoA, which is accompaniedby inactivation of ACC and increased activity of AMP-activated proteinkinase (AMPK). This study was designed to determine the effect ofexercise intensity on the enzyme kinetics of ACC, malonyl-CoA levels,and AMPK activity in skeletal muscle. Male Sprague-Dawley rats werekilled (pentobarbital sodium anesthesia) at rest or after 5 min ofexercise (10, 20, 30, or 40 m/min at 5% grade). The fast-twitch redand white regions of the quadriceps muscle were excised and frozen inliquid nitrogen. A progressive decrease in red quadriceps ACC maximalvelocity (from 28.6 ± 1.5 to 14.3 ± 0.7 nmol · g1 · min1,P < 0.05), an increase in activationconstant for citrate, and a decrease in malonyl-CoA (from 1.9 ± 0.2 to 0.9 ± 0.1 nmol/g, P < 0.05) were seen with theincrease in exercise intensity from rest to 40 m/min. AMPK activityincreased more than twofold. White quadriceps ACC activity decreasedonly during intense exercise. We conclude that the extent of ACCinactivation during short-term exercise is dependent on exerciseintensity.

  相似文献   

19.
Booth, Frank W., Wei Lou, Marc T. Hamilton, and Zhen Yan.Cytochrome c mRNA in skeletalmuscles of immobilized limbs. J. Appl.Physiol. 81(5): 1941-1945, 1996.Even thoughimmobilization of a slow skeletal muscle in a lengthened positionprevents muscle atrophy, it is unknown whether this treatment wouldprevent a decrease in mitochondrial quantity. We found that, regardless of muscle length in immobilized limbs, the mRNA of a marker for mitochondrial quantity, cytochrome c,decreased. Cytochrome c mRNA permilligram of muscle was 62 and 72% less 1 wk after fixation of thesoleus muscle in shortened and lengthened positions, respectively, thanage-matched controls. Cytochrome cmRNA per milligram wet weight was 36 and 32% less in the tibialisanterior muscle fixed for 1 wk in the shortened and lengthenedpositions, respectively, compared with age-matched controls. Recently,in the 3-untranslated region of cytochromec mRNA a novel RNA-protein interactionthat decreases in chronically stimulated rat skeletal musclewas identified.[Z. Yan, S. Salmons, Y. L. Dang, M. T. Hamilton, and F. W. Booth. Am. J. Physiol. 271 (CellPhysiol. 40): C1157- C1166,1996]. The RNA-protein interaction inthe 3-untranslated region of cytochrome c mRNA in soleus and tibialis anteriormuscles was unaffected by fixation in either shortened or lengthenedposition. We conclude that, whereas lengthening muscle during limbfixation abates the loss of total muscle protein, the percentagedecrease in cytochrome c mRNA isproportionally greater than total protein. This suggests that thedesign of countermeasures to muscle atrophy should include differentexercises to maintain total protein and mitochondria.

  相似文献   

20.
This study was designed to compare theactivity of skeletal muscle carnitine palmitoyltransferase I (CPT I) intrained and inactive men (n = 14) andwomen (n = 12). CPT Iactivity was measured in intact mitochondria, isolated from needlebiopsy vastus lateralis muscle samples (~60 mg). The variability ofCPT I activity determined on two biopsy samples from the same leg onthe same day was 4.4, whereas it was 7.0% on two biopsy samples fromthe same leg on different days. The method was sensitive to the CPT Iinhibitor malonyl-CoA (88% inhibition) and therefore specific for CPTI activity. The mean CPT I activity for all 26 subjects was 141.1 ± 10.6 µmol · min1 · kgwet muscle (wm)1 and wasnot different when all men vs. all women (140.5 ± 15.7 and 142.2 ± 14.5 µmol · min1 · kgwm1, respectively) were compared. However, CPT Iactivity was significantly higher in trained vs. inactive subjects forboth men (176.2 ± 21.1 vs. 104.1 ± 13.6 µmol · min1 · kgwm1) and women (167.6 ± 14.1 vs. 91.2 ± 9.5 µmol · min1 · kgwm1). CPT I activity was also significantly correlatedwith citrate synthase activity (all subjects,r = 0.76) and maximal oxygen consumption expressed in milliliters per kilogram per minute (all subjects, r = 0.69). Theresults of this study suggest that CPT I activity can be accurately andreliably measured in intact mitochondria isolated from human musclebiopsy samples. CPT I activity was not affected by gender, and higheractivities in aerobically trained subjects appeared to be the result ofincreased mitochondrial content in both men and women.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号