首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although susceptibility to seed shattering causes severe yield loss during cereal crop harvest, it is an adaptive trait for seed dispersal in wild plants. We previously identified a recessive shattering locus, sh-h , from the rice shattering mutant line Hsh that carries an enhanced abscission layer. Here, we further mapped sh-h to a 34-kb region on chromosome 7 by analyzing 240 F2 plants and five F3 lines from the cross between Hsh and Blue&Gundil. Hsh had a point mutation at the 3' splice site of the seventh intron within LOC_Os07g10690, causing a 15-bp deletion of its mRNA as a result of altered splicing. Two transferred DNA (T-DNA) insertion mutants and one point mutant exhibited the enhanced shattering phenotype, confirming that LOC_Os07g10690 is indeed the sh-h gene. RNA interference (RNAi) transgenic lines with suppressed expression of this gene exhibited greater shattering. This gene, which encodes a protein containing a conserved carboxy-terminal domain (CTD) phosphatase domain, was named Oryza sativa CTD phosphatase-like 1 ( OsCPL1 ). Subcellular localization and biochemical analysis revealed that the OsCPL1 protein is a nuclear phosphatase, a common characteristic of metazoan CTD phosphatases involved in cell differentiation. These results demonstrate that OsCPL1 represses differentiation of the abscission layer during panicle development.  相似文献   

2.
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料, 采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明, 104个SSR标记在亲本间具有多态性, 多态率为68.0%; 4个置换系的落粒性与亲本日本晴的落粒性相似, 表现难落粒。3个置换系与亲本93-11的落粒性相似, 表现易落粒; 7个染色体片段置换系在第1和第6染色体上检出7个置换片段, 其长度分别为23.6、16.5、 6.6、 9.9、 10.4、 20.2和7.1 cM; qSH-1-1被定位在第1染色体RM472-RM1387之间, 遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL, 被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL, qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

3.
Seed shattering is an important factor causing loss of grain yield before and during rice harvest. In the present study, the quantitative trait loci regarding shattering scale, breaking tensile strength (BTS) and abscission layer (AL), the parameters evaluating seed shattering habit by hand gripping, a digital force gauge and observation on AL, respectively, were identified by using an doubled haploid line (DHL) population from a cross between a loose-shattering type Tongil variety, ‘Samgang’, and a moderately difficult shattering japonica variety, ‘Nagdong’. Eight QTLs consisted in four QTLs for shattering scale, two QTLs for AL, each one QTL for pulling and bending strength were detected on six chromosomes, respectively. Among them, Qss1 with flanking markers RM6696 and RM476 explained 31% of phenotype variation in shattering scale. Furthermore, two new QTLs controlling shattering habit, Qss5-2 and Qal5-1, were located on chromosome 5 at the interval 5028–5037 and 5021-RM289. They explained 10% and 12% of phenotype variations, respectively. A total of eleven digenic epistatic loci were identified for four parameters. The identification of QTLs affecting seed shattering habits is favorable to thoroughly dissect the genetic mechanism of the shattering habit and to apply for marker-assisted selection in rice breeding system of specific regions.  相似文献   

4.
It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. sativa cv. Nipponbare (a recurrent parent) and O. rufipogon acc. W630 (a donor parent). As a result, two strong QTLs were detected on chromosomes 1 and 4, and they were found to be identical to the two major seed-shattering loci, qSH1 and sh4, respectively. The allelic interaction at these loci was further examined using two sets of backcross populations having reciprocal genetic backgrounds, cultivated and wild. In the genetic background of cultivated rice, the wild qSH1 allele has stronger effect on seed shattering than that of sh4. In addition, the wild alleles at both qSH1 and sh4 loci showed semi-dominant effects. On the other hand, in the genetic background of wild rice, non-shattering effects of Nipponbare alleles at both loci were examined to inspect rice domestication from a viewpoint of seed shattering. It was serendipitous that the backcross plants individually having Nipponbare homozygous alleles at either shattering locus (qSH1 or sh4) shed all the seeds. This fact strongly indicates that the non-shattering behavior was not obtained by a single mutation in the genetic background of wild rice. Probably, some other minor genes are still associated with the formation or activation of abscission layer, which enhance the seed shattering.  相似文献   

5.
6.
7.
利用染色体片段置换系定位水稻落粒性主效QTL   总被引:9,自引:3,他引:6  
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料,采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明,104个SSR标记在亲本间具有多态性,多态率为68.0%;4个置换系的落粒性与亲本日本晴的落粒性相似,表现难落粒。3个置换系与亲本93-11的落粒性相似,表现易落粒;7个染色体片段置换系在第1和第6染色体上检出7个置换片段,其长度分别为23.6、16.5、6.6、9.9、10.4、20.2和7.1 cM;qSH-1-1被定位在第1染色体RM472-RM1387之间,遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL,被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL,qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

8.
9.
Zhang B  Tian F  Tan L  Xie D  Sun C 《遗传学报》2011,38(9):411-418
Tiller number and culm length are important components of plant architecture and determinate grain production in rice.A line SIL046,derived from an introgression lines population developed by an accession of common wild rice (Oryza rufipogon Griff.) and a high-yielding indica cultivar Guichao 2 (Oryza sativa L.).exhibits a higher tiller number and shorter culm length phenotype than the recipient parent Guichao 2 (GC2).Genetic analysis showed that the high-tillering dwarf phenotype was controlled by a novel single recessive gene,referred to as the high-tillering dwarf3 (htd3),which located within the genetic distance of 13.4 cM between SSR makers RM7003 and RM277 on chromosome 12.By means of fine-mapping strategy,we mapped HTD3 gene within the genetic distance of 2.5 cM and the physical distance of 3100 kb in the centromere of chromosome 12.Further identification of HTD3 gene would provide a new opportunity to uncover the molecular mechanism of the development of culm and tiller,two important components of yields in rice.  相似文献   

10.
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed‐shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ~26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering.  相似文献   

11.
The Pik m gene in rice confers a high and stable resistance to many isolates of Magnaporthe oryzae collected from southern China. This gene locus was roughly mapped to the long arm of rice chromosome 11 with restriction fragment length polymorphic (RFLP) markers in the previous study. To effectively utilize the resistance, a linkage analysis was performed in a mapping population consisting of 659 highly susceptible plants collected from four F2 populations using the publicly available simple sequence repeat (SSR) markers. The result showed that the locus was linked to the six SSR markers and defined by RM254 and RM144 with ≈13.4 and ≈1.2 cM, respectively. To fine map this locus, additional 10 PCR-based markers were developed in a region flanked by RM254 and RM144 through bioinformatics analysis (BIA) using the reference sequence of cv. Nipponbare. The linkage analysis with these 10 markers showed that the locus was further delimited to a 0.3-cM region flanked by K34 and K10, in which three markers, K27, K28, and K33, completely co-segregated with the locus. To physically map the locus, the Pik m -linked markers were anchored to bacterial artificial chromosome clones of the reference cv. Nipponbare by BIA. A physical map spanning ≈278 kb in length was constructed by alignment of sequences of the clones anchored by BIA, in which only six candidate genes having the R gene conserved structure, protein kinase, were further identified in an 84-kb segment.  相似文献   

12.
Seed shattering is an evolutionary trait that is essential to the survival of wild and weedy rice. Discovery of the qSH1 gene in rice subspecies Japonica and Sh4 in the rice subspecies Indica indicated the possibility that seed shattering is governed by major genes in a qualitative manner. However, observation of the large variability of seed shattering in weedy rice has led us to hypothesise that other genes related to abscission layer integrity could also be important in the regulation of seed shattering in rice. Gene expression 10 days after pollination and nucleotide composition revealed that qSH1 and Sh4 that are described as major players in seed shattering were not important in weedy rice. High expression of the gene OsCPL1 was positively associated with the occurrence of high seed shattering in weedy rice, which did not concur in previous studies of cultivated rice. This result is related to the absence of four SNPs and an indel in the OsCPL1 gene in weedy rice that are related to seed shattering in previous studies. Analysis of the expression of six genes related to cell wall synthesis/degradation revealed the importance of the genes OsXTH8 and OsCel9D in seed shattering in weedy rice. Therefore, in addition to qSH1 and Sh4, the genes OsCPL1, OsXTH8 and OsCel9D should be considered in studies of rice evolution and in the development of mitigation approaches of gene flow in transgenic rice.  相似文献   

13.
Yang H  Ren X  Weng Q  Zhu L  He G 《Hereditas》2002,136(1):39-43
The brown planthopper (BPH), Nilaparvata lugens St?l, is a serious insect pest of rice (Oryza saliva L.). We have determined the chromosomal location of a BPH resistance gene in rice using SSR and RFLP techniques. A rice line 'B14', derived from the wild rice Oryza latifolia, showed high resistance to BPH. For tagging the resistance gene in 'B14X', an F2 population and a recombinant inbred (RI) population from a cross between Taichung Native 1 and 'B14' were developed and evaluated for BPH resistance. The results showed that a single dominant gene controlled the resistance of 'B14' to BPH. Bulked segregant SSR analysis was employed for identification of DNA markers linked to the resistance gene. From the survey of 302 SSR primer pairs, three SSR (RM335, RM261, RM185) markers linked to the resistance gene were identified. The closest SSR marker RM261 was linked to the resistance gene at a distance of 1.8 cM. Regions surrounding the resistance gene and the SSR markers were examined with additional RFLP markers on chromosome 4 to define the location of the resistance gene. Linkage of RFLP markers C820, R288, C946 with the resistance gene further confirmed its location on the short arm of chromosome 4. Closely linked DNA markers will facilitate selection for resistant lines in breeding programs and provide the basis for map-based cloning of this resistance gene.  相似文献   

14.
Hybrid sterility between indica and japonica subspecies in rice is basically caused by partial abortion of gametes and hybrid fertility could be recovered by a single wide compatibility (WC) allele. In this study, a typical indica germplasm source of rice, UPRI 95-162, with strong wide compatibility in cross with japonica rice was studied for location of its WC locus. Bulked segregant analysis was performed and SSRs (simple sequence repeats) were conducted on a F1 population derived from a three-way cross (UPRI 95-162/T8//Akihikari). The locus was located on chromosome 1 approximately 0.2 cM to SSR markers RM581 on one side and 1.5 cM to RM292 on another. This WC locus, tentatively designated as S-20 n (t), and its tight linkage markers, RM581 and RM292, would be very useful for efficient marker-assisted selection for breeding new WC varieties and for map-based cloning of the gene.  相似文献   

15.
A novel floral organ mutant of rice (Oryza sativa L. subsp. indica), termed pistilloid-stamen (ps) here, has flowers with degenerated lemma and palea, with some stamens transformed into pistils and pistil-stamen chimeras. Genetic analysis confirmed that the ps trait is controlled by a single recessive gene. F2 and F3 segregation populations derived from PS ps heterozygote crossed with Oryza sativa subsp. indica 'Luhui-17' (PS PS) were used for molecular mapping of the gene using simple sequence repeat (SSR) markers. With 97 recessive individuals from an F2 segregation population, the ps locus was preliminarily mapped 6.2 cM distal to marker RM6324 and 3.1 cM proximal to marker RM6340 in the terminal region of the short arm of chromosome 1. With a large F3 segregation population, the gene was fine-mapped between markers RM6470 and RM1141, at distances of 0.10 and 0.03 cM to each marker, respectively. The position of the ps gene was finally located within a 20 kb physical region containing 3 annotated putative genes. One of them, encoding a protein with a single C2H2 zinc-finger domain, may be the candidate gene for PS.  相似文献   

16.
赤霉素(GA3)鉴定表明,一种新型特矮稻(命名为‘特矮稻-2’)的GA3信号转导途径正常,施加外源GA3不能恢复到正常植株的高度,说明此种矮稻的矮化机制与GA3无关。来源于组合‘特矮稻-2’ב日本晴’的F2群体的遗传分析表明,‘特矮稻-2’的特矮性状受1对隐性基因控制。采用SSR分子标记,将该矮秆基因定位于第12染色体上的RM519和RM235标记之间,遗传距离分别为15.9和22.0cM,该基因暂命名为ED。  相似文献   

17.
Host-plant resistance is the preferred strategy for management of Asian rice gall midge (Orseolia oryzae), a serious pest in many rice-growing countries. The deployment of molecular markers linked to gall midge resistance genes in breeding programmes can accelerate the development of resistant cultivars. In the present study, we have tagged and mapped a dominant gall midge resistance gene, Gm1, from the Oryza sativa cv. W1263 on chromosome 9, using SSR markers. A progeny-tested F2 mapping population derived from the cross W1263/TN1 was used for analysis. To map the gene locus, initially a subset of the F2 mapping population consisting of 20 homozygous resistant and susceptible lines each was screened with 63 parental polymorphic SSR markers. The SSR markers RM316, RM444 and RM219, located on chromosome 9, are linked to Gm1 at genetic distances of 8.0, 4.9 and 5.9 cM, respectively, and flank the gene locus. Further, gene/marker order was also determined. The utility of the co-segregating SSR markers was tested in a backcross population derived from the cross Swarna/W1263//Swarna, and allelic profiles of these markers were analysed in a set of donor rice genotypes possessing Gm1 and in a few gall midge-susceptible, elite rice varieties.  相似文献   

18.
Rice (Oryza sativa L.) is widely cultivated around the world and is known to be domesticated from its wild form, O. rufipogon. A loss of seed shattering is one of the most obvious phenotypic changes selected for during rice domestication. Previously, three seed-shattering loci, qSH1, sh4, and qSH3 were reported to be involved in non-shattering of seeds of Japonica-type cultivated rice, O. sativa cv. Nipponbare. In this study, we focused on non-shattering characteristics of O. sativa Indica cv. IR36 having functional allele at qSH1. We produced backcross recombinant inbred lines having chromosomal segments from IR36 in the genetic background of wild rice, O. rufipogon W630. Histological and quantitative trait loci analyses of abscission layer formation were conducted. In the analysis of quantitative trait loci, a strong peak was observed close to sh4. We, nevertheless, found that some lines showed complete abscission layer formation despite carrying the IR36 allele at sh4, implying that non-shattering of seeds of IR36 could be regulated by the combination of mutations at sh4 and other seed-shattering loci. We also genotyped qSH3, a recently identified seed-shattering locus. Lines that have the IR36 alleles at sh4 and qSH3 showed inhibition of abscission layer formation but the degree of seed shattering was different from that of IR36. On the basis of these results, we estimated that non-shattering of seeds in early rice domestication involved mutations in at least three loci, and these genetic materials produced in this study may help to identify novel seed-shattering loci.  相似文献   

19.
A rice mutant with rolling leaf, namely γ-rl, was obtained from M2 progenies of a native indica rice stable strain Qinghuazhan (QHZ) from mutagenesis of dry seeds by γ-rays. Genetic analysis using the F2 population from a cross between this mutant and QHZ indicated the mutation was controlled by a single recessive gene. In order to map the locus for this mutation, another F2 population with 601 rolling leaf plants was constructed from a cross between y-rl and a japonica cultivar 02428. After primary mapping with SSR (simple sequence repeats) markers, the mutated locus was located at the short arm of chromosome 3, flanked by RM6829 and RM3126. A number of SSR, InDel (insertion/deletion) and SNP (single nucleotide polymorphism) markers within this region were further developed for fine mapping. Finally, two markers, SNP121679 and InDe1422395, were identified to be flanked to this locus with genetic distances of 0.08 cM and 0.17 cM respectively, and two SNP markers, SNP75346 and SNPl10263, were found to be co-segregated with this locus. These results suggested that this locus was distinguished from all loci for the rolling leaf mutation in rice reported so far, and thus renamed rl10(t). By searching the rice genome database with closely linked markers using BLAST programs, an e-physical map covering rl10(t) locus spanning about a 50 kb region was constructed. Expression analysis of the genes predicted in this region showed that a gene encoding putative flavin-containing monooxygenase (FMO) was silenced in γ-rl, thus this is the most likely candidate responsible for the rolling leaf mutation.  相似文献   

20.
不同国家水稻品种的遗传多样性分析   总被引:5,自引:0,他引:5  
探讨世界不同国家水稻品种的遗传多样性,旨在为各国品种资源的有效利用提供理论依据。本研究利用63对引物对36份来源于不同国家的水稻品种进行遗传多样性分析。共检测到269个等位基因,每个位点的等位基因数(Na)平均为4.54个,有效等位基因数(Ne)平均为3.22,基因多样性指数(H)平均为0.64,Shannon’s信息指数(I)平均为1.21,引物RM206、RM257、RM410、RM235、RM266的等位基因数较多在7条以上。所处纬度相近的国家或地区的水稻品种之间的遗传距离较近,被聚为同一类群,而所处纬度较远的国家或地区的水稻品种被分到了不同类群。结果表明,水稻品种之间的遗传差异与纬度和地理距离有很大的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号