首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactose-positive (Lac+) transconjugants resulting from matings between Streptococcus lactic ML3 and S. lactis LM2301 possess a single plasmid of approximately 60 megadaltons (Mdal) which is nearly twice the size of the lactose plasmid of the donor. The majority of these Lac+ transconjugants aggregated in broth and were able to transfer lactose-fermenting ability at a frequency higher than 10(-1) per donor on milk agar plates or in broth. Lac+ transconjugants which did not clump conjugated at a much lower frequency. Lactose-negative derivatives of Lac+ clumping transconjugants did not aggregate in broth and were missing the 60-Mdal plasmid. The ability to aggregates in broth was very unstable. Strains could lose the ability to clump but retain lactose-fermenting ability. The majority of these Lac+ nonclumping derivatives of clumping transconjugants contained a plasmid of approximately 33 Mdal, the size of the lactose plasmid of the original donor ML3. These strains transferred lactose-fermenting ability at a frequency of approximately 10(-6) per donor, resulting in both Lac+ clumping transconjugants which contained a 60-Mdal plasmid and Lac+ nonclumping transconjugants which possessed a 33-Mdal plasmid. Our results suggest that the genes responsible for cell aggregation and high-frequency conjugation are on the segment of deoxyribonucleic acid which recombined with the 33-Mdal lactose plasmid in S. lactis ML3.  相似文献   

2.
Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products.  相似文献   

3.
beta-D-Phosphogalactoside galactohydrolase (beta-Pgal) was examined in a number of lactic streptococci by use of the chromogenic substrate o-nitrophenyl-beta-D-galactopyranoside-6-phosphate. Specific activity of beta-Pgal ranged from 0.563 units/mg of protein in Streptococcus lactis UN, to 0.120 in S. diacetilactics 18-16. Essentially no beta-D-galactoside galactohydrolase (beta-gal) was found in these organisms when o-nitrophenyl-beta-D-galactopyranoside served as the chromogenic substrate. S. lactis 7962 was the one exception found. This organism contained rather high levels of beta-gal, and very little beta-Pgal could be detected. beta-Pgal activity was examined in streptococci that differed widely in both their proteolytic ability and rates of lactic acid production during growth in milk. Differences in proteolytic ability did not influence beta-Pgal synthesis; also, the rate of lactic acid production was independent of the level of beta-Pgal present in the cell, since the rate of lactic acid production could be increased approximately fourfold without changing the amount of beta-Pgal present in the cell. Various carbohydrates were tested as potential inducers of the enzyme. Although galactose, either as the free sugar or combined with glucose in lactose, was the only inducer, noninducing sugars such as mannose or glucose showed some ability to cause fluctuations in the basal level of beta-Pgal. Cells growing in mannose or glucose exhibited about 30% of the maximal enzyme levels found in cells growing in lactose or galactose. No gratuitous inducers were found.  相似文献   

4.
Present evidence indicates that lactose metabolism in group N streptococci is linked to plasmid deoxyribonucleic acid. Lactose-positive (Lac+) Streptococcus lactis and lactose-negative (Lac-) derivatives were examined for their resistance to various inorganic ions. Lac+ S. lactis strains ML3, M18, and C2 were found more resistant to arsenate (7.5- to 60.2-fold), arsenite (2.25- to 3.0-fold), and chromate (6.6- to 9.4-fold), but more sensitive to copper (10.0- to 13.3-fold) than their Lac- derivatives. These results suggested that genetic information for resistance and/or sensitivity to these ions resides on the "lactose plasmid." Kinetics of ultraviolet irradiation inactivation of transducing ability for lactose metabolism and arsenate resistance confirmed the plasmid location of the two markers. Lac+ transductants from S. lactis C2 received genetic determinants for resistance to arsenate, arsenite, and chromate but not for copper sensitivity. In this case, resistance markers were lost when the transductants became Lac- but the derivatives remained copper resistant. The resistant markers for arsenate and arsenite could not be identified as separate genetic loci, but chromate resistance and copper sensitivity markers were found to be independent genetic loci. The "lactose plasmid" from S. lactis C10 possessed the genetic loci for arsenate and arsenite resistance but not for chromate resistance or copper sensitivity.  相似文献   

5.
Genetic recombination between a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1) in Escherichia coli K-12 has been examined. Since the deletions were nonoverlapping, rare lactose-fermenting (Lac+) recombinants occurred and were detected qualitatively on lactose tetrazolium agar indicator plates as white papillae growing on the surface of red colonies or quantitively on lactose minimal agar plates. Formation of Lac+ recombinants required the recA, recB, and recC gene products. Indirect suppression of recB21 by sbcB15 led to an increase in the frequency of Lac+ recombinants over wild-type levels. recF143 did not appreciably alter the number of Lac+ progeny, whereas recL152 and sbcB15 strains yielded increased numbers of Lac+ recombinants. The nature and formation of Lac+ recombinants was also examined. Respreading analysis indicated that formation of recombinants occurred primarily as the cells entered early stationary phase on the surface of the minimal agar plates and that over 90% of the recombinants contained a phi80dIIlac+ prophage. Time-of-entry experiments suggested that the region of deoxyribonucleic acid between the two operons was not inverted as a result of the recombinational event.  相似文献   

6.
Lactose metabolism in Erwinia chrysanthemi.   总被引:18,自引:11,他引:7       下载免费PDF全文
Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system and most contained an inducible beta-galactosidase. The transport system, product of the lmrT gene, mediates uptake of lactose in the Lac+ derivatives and also appears to be able to mediate uptake of melibiose, raffinose, and galactose. Two genes encoding beta-galactosidase enzymes were detected in E. chrysanthemi strains. That mainly expressed in the wild-type strains was the lacZ product. The other, the lacB product, is very weakly expressed in these strains. These enzymes showed different affinities for the substrates o-nitrophenyl-beta-D-galactopyranoside and lactose and for the inhibitors isopropyl-beta-D-thiogalactopyranoside and galactose. The lmrT and lacZ genes of E. chrysanthemi, together with the lacI gene coding for the regulatory protein controlling lacZ expression, were cloned by using an RP4::miniMu vector. When these plasmids were transferred into Lac- Escherichia coli strains, their expression was similar to that in E. chrysanthemi. The cloning of the lmrT gene alone suggested that the lacZ or lacB gene is not linked to the lmrT gene on the E. chrysanthemi chromosome. One Lac+ E. chrysanthemi derivative showed a constitutive synthesis of the beta-galactosidase encoded by the lacB gene. This mutation was dominant toward the lacI lacZ cloned genes. Besides these mutations affecting the regulation of the lmrT or lacB gene, the isolation of structural mutants unable to grow on lactose was achieved by mutagenic treatment. These mutants showed no expression of the lactose transport system, the lmrT mutants, or the mainly expressed beta-galactosidase, lacZ mutants. The lacZ mutants retained a very low beta-galactosidase level, due to the lacB product, but this level was low enough to permit use of the lacZ mutants for the construction of gene fusions with the Escherichia coli lac genes.  相似文献   

7.
Streptococcus lactis subsp. diacetylactis strain WM4 transferred lactose-fermenting and bacteriocin-producing (Bac+) abilities to S. lactis LM2301, a lactose-negative, streptomycin-resistant (Lac- Strr), plasmid-cured derivative of S. lactis C2. Three types of transconjugants were obtained: Lac+ Bac+, Lac+ Bac-, and Lac-Bac+.S. diacetylactis WM4 possessed plasmids of 88, 33, 30, 5.5, 4.8, and 3.8 megadaltons (Mdal). In Lac+ Bac+ transconjugants, lactose-fermenting ability was linked to the 33-Mdal plasmid and bacteriocin-producing ability to the 88-Mdal plasmid. Curing the 33-Mdal plasmid from Lac+ Bac+ transconjugants resulted in loss of lactose-fermenting ability but not bacteriocin-producing ability (Lac- Bac+). These strains retained the 88-Mdal plasmid. Curing of both plasmids resulted in a Lac- Bac- phenotype. The Lac+ Bac- transconjugant phenotype was associated with a recombinant plasmid of 55 or 65 Mdal. When these transconjugants were used as donors in subsequent matings, the frequency of Lac transfer was about 2.0 X 10(-2) per recipient plated, whereas when Lac+ Bac+ transconjugants served as donors, the frequency of Lac transfer was about 2.0 X 10(-5) per recipient plated. Also, Lac- Bac+ transconjugants were found to contain the 88-Mdal plasmid. The data indicate that the ability of WM4 to produce bacteriocin is linked to an 88-Mdal conjugative plasmid and that lactose-fermenting ability resides on a 33-Mdal plasmid.  相似文献   

8.
A lactose-negative (Lac-), proteinase-negative (Prt-) mutant, designated C145 was isolated from Streptococcus lactis C2 after treatment with nitrosoguanidine and ultraviolet irradiation. The mutant appeared to be cured of the prophage(s) present in S. lactis C2 based on non-inducibility by ultraviolet irradiation or mitomycin C. When cleared lysate material from C145 was subjected, to cesium chloride-ethidum bromide (EB) density gradient centrifugation, no plasmid peak was observed, suggesting that C145 was cured of plasmid deoxyribonucleic and (DNA). A histogram showing distribution of contour lengths of circular molecules of DNA from C145, however, revealed the presence of a greatly diminished number of DNA molecules as compared with the parent culture and indicated the absence of the 30 x 10(6) plasmid. Cesium chloride-ethidium bromide gradient profiles from Lac+, Prt- and Lac+ Prt+ transductants of C145 revealed no plasmid peak, but electron microscopy of the fractions normally possessing the satellite band of DNA showed the presence of a new plasmid species having a molecular weight from 20 x 10(6) to 22 x 10(6). This plasmid was lost when the transductants became Lac-. Examination of a plasmid histogram from a spontaneous Lac- Prt- mutants of S. lactis C2 resembled that of C145, with the absence of the 30 x 10(6) plasmid and the presence of the 22 x 10(6) plasmid in Lac+ Prt+ transductants. The results suggest that lactose metabolism is mediated through the 30 x 10(6) plasmid in S. lactis C2 and that the transducing bacteriophage, which is too small to accommodate the entire plasmid, is transferring about two-thirds of the original plasmid through a process termed transductional shortening.  相似文献   

9.
Populations of lactose positive (Lac+) and proteinase positive (Prt+) cells from Streptococcus lactis M18, C10, and ML3 grown at 39 degrees C gave rise to increasing proportions of Lac- Prt- clones. The deficiencies did not appear until after a number of generations at the elevated temperature, and the rate depended on the strain.Lac- Prt+ and Lac+ Prt- mutants were isolated after treatment with ethidium bromide. Plasmid deoxyribonucleic acid was isolated by cesium chloride-ethidium bromide equilibrium density gradient centrifugation from the parent cultures as well as from their Lac- Prt-, Lac- Prt+, and Lac+ Prt- mutants. Five distinct plasmid sizes of approximate molecular weights of 2,4, 8, 21, and 27 million were found in S. lactis C10, whereas the Lac- Prt- derivative lacked the 8- and 21-million-dalton plasmids, but the 8-million-dalton plasmid was present in the Lac-Att mutant. In S. lactis m18 five plasmids possessing molecular weights of about 2, 4, 10, 18 and 27 million were observed. The 10- and 18-million-dalton plasmids were not detected in the Lac- Prt- mutants, whereas the Lac- Prt+ derivative lacked only the 18-million-dalton plasmid and the Lac+ Prt- mutant lacked only the 10-million-dalton plasmid. In S. lactis ML3 five distinct plasmids, with approximate molecular weights of 2, 4, 8, 22, and 30 million, were present. The 8- and 22-million-dalton plasmids were not detected in the Lac- Prt- derivative, but the 8-million-dalton plasmid was present in the Lac- Prt+ mutant. The evidence suggests that lactose-fermenting ability and proteinase activity in these organisms are mediated through two distinct plasmids having molecular weights of 8 x 10(6) to 10 x 10(6) for proteinase activity and 18 x 10(6) to 22 x 10(6) for lactose metabolism.  相似文献   

10.
Mutant Chinese hamster ovary cells altered in glycoproteins have been isolated by selecting for ability to survive exposure to [6-3H]fucose. Mutagenized wild-type cells were permitted to incorporate [3H]fucose to approximately 1 cpm of trichloroacetic acid-insoluble radioactivity per cell and then frozen for several days to accumulate radiation damage. The overall viability of the population was reduced by 5- to 50-fold. Four consecutive selection cycles were carried out. The surviving cells were screened by replica plating-fluorography for clones showing decreased incorporation of fucose into trichloroacetic acid-insoluble macromolecules. Considerable enrichment for cells deficient in fucose uptake or incorporation into proteins (or both) was found in populations surviving the later selection cycles. Two mutant clones isolated after the fourth selection cycle had the same doubling time as the wild type, but contained only 30 to 40% as much fucose bound to proteins as the wild type. Sialic acid contents of the mutants and the wild type were similar. The mutants differed quantitatively and qualitatively from the wild type and from each other with respect to total glycoprotein profiles as visualized by sodium dodecyl sulfate gel electrophoresis. Differences were also found in resistances to cytotoxicity of lectins such as concanavalin A and wheat germ agglutinin.  相似文献   

11.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

12.
Loss of Lactose Metabolism in Lactic Streptococci   总被引:68,自引:46,他引:22       下载免费PDF全文
Lactose-negative mutants occurred spontaneously in broth cultures of Streptococcus lactis C(2)F. Instability of lactose metabolism was noted in other strains of S. lactis, in strains of S. cremoris, and in S. diacetilactis. Colonies of S. lactis C(2)F grown with lactose as the carbohydrate source also possessed lac(-) cells. Treatment of lactic streptococci with the mutagen acriflavine (AF) increased the number of non-lactose-fermenting variants. The effect of AF on growth and on loss of lactose-fermenting ability in S. lactis C(2)F was consequently further examined. The presence of AF appears to favor competitively the growth of spontaneously occurring lactose-negative cells and appears to act in the conversion of lactose-positive to non-lactose-fermenting cells. The lactose-negative mutants partially revert to lactose-positive variants which remain defective in lactose metabolism and remain unable to coagulate milk. The lactose-negative cells become dominant in continuous culture growth and provide evidence that alterations in the characteristics of starter strains can be produced by continuous culture, in this case, the complete loss in ability to ferment lactose.  相似文献   

13.
Streptococcus lactis strain DR1251 was capable of growth on lactose and galactose with generation times, at 30 degrees C, of 42 and 52 min, respectively. Phosphoenolpyruvate-dependent phosphotransferase activity for lactose and galactose was induced during growth on either substrate. This activity had an apparent K(m) of 5 x 10(-5) M for lactose and 2 x 10(-2) M for galactose. beta-d-Phosphogalactoside galactohydrolase activity was synthesized constitutively by these cells. Strain DR1251 lost the ability to grow on lactose at a high frequency when incubated at 37 degrees C with glucose as the growth substrate. Loss of ability to metabolize lactose was accompanied by the loss of a 32-megadalton plasmid, pDR(1), and Lac(-) isolates did not revert to a Lac(+) phenotype. Lac(-) strains were able to grow on galactose but with a longer generation time. Galactose-grown Lac(-) strains were deficient in beta-d-phosphogalactoside galactohydrolase activity and phosphoenolpyruvate phosphotransferase activity for both lactose and galactose. There was also a shift from a predominantly homolactic to a heterolactic fermentation and a fivefold increase in galactokinase activity, relative to the Lac(+) parent strain grown on galactose. These results suggest that S. lactis strain DR1251 metabolizes galactose primarily via the tagatose-6-phosphate pathway, using a lactose phosphoenolpyruvate phosphotransferase activity to transport this substrate into the cell. Lac(-) derivatives of strain DR1251, deficient in the lactose phosphoenolpyruvate phosphotransferase activity, appeared to utilize galactose via the Leloir pathway.  相似文献   

14.
During studies on spontaneous loss of lactose metabolism in Streptococcus lactis C2, it was found that the lactose-negative (lac(-)) mutants were also proteinase negative (prt(-)). This pleiotropic effect was observed in S. diacetilactis 18-16, but not in S. cremoris B1. The lac(-)prt(-) mutants from S. lactis C2 were able to grow in milk, but no pH change or measurable protein breakdown occurred. When the milk was supplemented with glucose, a slow decline in pH occurred. Addition of a protein hydrolysate to milk did not stimulate acid production. When both supplements were added to milk, normal growth and pH change were obtained. When the lac(-)prt(-) mutant of S. lactis C2 was transduced with the temperate phage from the lac(+)prt(+) parent culture, approximately equal numbers of lac(+)prt(-) and lac(+)prt(+) transductants were obtained. When the spontaneous lac(+)prt(-) strain of S. lactis C2 was converted to a lac(-)prt(-) derivative and transduced, similar results were obtained. The co-transduction of the lactose and proteinase markers suggest they are closely associated. The findings indicate that the transducing phage from S. lactis C2 can be used to examine the causes of instability in both the lactose and proteinase enzyme systems of this organism.  相似文献   

15.
Group N streptococci, which have the lactose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) and phospho-beta-d-galactosidase (beta-Pgal), grew rapidly on lactose and converted more than 90% of the sugar to l-lactate. In contrast, Streptococcus lactis 7962, which does not have a beta-Pgal, grew slowly on lactose and converted only 15% of the sugar to l-lactate. With glucose and galactose, this strain had growth rates and fermentation patterns similar to those of other S. lactis strains, suggesting that the rapid and homolactic fermentation of lactose that is characteristic of group N streptococci is dependent upon a functional PEP-dependent PTS and the presence of beta-Pgal. Seventeen strains of group N streptococci were examined for the activator specificities of pyruvate kinase and lactate dehydrogenase. The properties of each enzyme from all the strains, including S. lactis 7962, were similar. Pyruvate kinase had a broad activator specificity, whereas activation of lactate dehydrogenase was specific for ketohexose diphosphate. All intermediates of lactose metabolism from the hexose phosphates to the triose phosphates activated pyruvate kinase. No activation was obtained with adenosine 5'-monophosphate. K and Mg were required for pyruvate kinase activity but could be replaced by NH(4) and Mn, respectively. Lactate dehydrogenase was activated equally by fructose-1,6-diphosphate and tagatose-1,6-diphosphate, the activation characteristics being pH dependent. The roles of pyruvate kinase and lactate dehydrogenase in the regulation of lactose fermentation by group N streptococci are discussed.  相似文献   

16.
The unstable ability to metabolize lactose (lac) via the phosphoenolpyruvate-phosphotransferase system (PTS) was examined in Streptococcus cremoris B1. The presence of functional lactose-specific PTS enzymes was correlated with the presence of a distinct plasmid species. Characterization of deoxyribonucleic acid extracted from lactose-positive (Lac+) S. cremoris B1 revealed two plasmids having molecular weights of 9 X 10(6) and 36 X 10(6). An acriflavine (BC1)-induced, lactose-negative (Lac-) mutant possessed no plasmids and was devoid of all three lac-specific PTS enzymes. A Lac- mutant (DA2) isolated by growing at elevated temperatures only possessed the 9 X 10(6)-dalton plasmid and also lacked the lac PTS enzymes. A spontaneous Lac- mutant possessed both the 9 X 10(6)-and 36 X 10(6)-dalton plasmids. This mutant displayed FIII-lac and phospho-beta-D-galactosidase (P-beta-gal) activity but was deficient in EII-lac activity. The spontaneous Lac- strain reverted to both full and partial lactose-fermenting phenotypes having FIII-lac, EII-lac, and P-beta-gal activities. BC1 and DA2 Lac- mutants reverted only to the partial lactose-fermenting phenotype having P-beta-gal activity; EII-lac and FIII-lac activities were absent. The results indicate that the genetic determinants for EII-lac, FIII-lac, and P-beta-gal are located on the 36 X 10(6)-dalton plasmid in S. cremoris B1. Evidence for a second chromosomally associated P-beta-gal gene operating in the partial lactose-fermenting revertants is also presented.  相似文献   

17.
Conjugal matings were performed between Lactococcus lactis DRC1 (a lactose-fermenting (Lac+), bacteriocin-producing (Bac+) strain) and L. lactis HID113 (Lac- and Bac-). Transconjugant derivatives of HID113 were identified on the basis of lactose fermentation, resistance to the DRC1 bacteriocin (dricin) or reduced sensitivity to phage sk1. Regardless of how they were identified, all transconjugants gave fewer and smaller plaques with phages c2 and sk1 than did HID113. All but one of 275 transconjugants tested also produced dricin, suggesting some functional relationship or close genetic linkage between the reduced phage sensitivity and dricin production and resistance. Some transconjugants were also Lac+, but this property was unstable.  相似文献   

18.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

19.
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.  相似文献   

20.
Lactose and melibiose metabolism in Erwinia chrysanthemi.   总被引:1,自引:0,他引:1       下载免费PDF全文
A Lac+ mutant of Erwinia chrysanthemi was isolated from the Lac- wild type on lactose agar. beta-Galactosidase was expressed independently of lactose transport in both the mutant and the wild type, and neither strain expressed thiogalactoside transacetylase. Lactose transport and alpha-galactosidase, constitutive in the Lac+ strain, were coordinately induced in the Lac- strain by melibiose and raffinose but not by isopropyl-beta-D-thiogalactopyranoside or thiomethyl-beta-D-galactopyranoside. Melibiose was a strong inhibitor of both the melibiose- and the raffinose-induced lactose permeases, whereas raffinose was a strong inhibitor of only the raffinose-induced lactose permease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号