首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

2.
1. The bivalent cation ionophore A23187 was used to increase the intracellular concentration of Ca2+ in pigeon erythrocytes to investigate whether the increase in cyclic AMP content caused by adrenaline might be influenced by a change in intracellular Ca2+ in intact cells. 2. Incubation of cells with adrenaline, in the concentration range 0.55--55 muM, resulted in an increase in the concentration of cyclic AMP over a period of 60 min. The effect of adrenaline was inhibited by more than 90% with ionophore A23187 (1.9 muM) in the presence of 1 mM-Ca2+. This inhibition could be decreased by decreasing either the concentration of the ionophore or the concentration of extracellular Ca2+, and was independent of the concentration of adrenaline. 3. The effect of ionophore A23187 depended on the time of incubation. Time-course studies showed that maximum inhibition by ionophore A23187 was only observed when the cells were incubated with the ionophore for at least 15 min before the addition of adrenaline. 4. The inhibition by ionophore A23187 depended on the concentration of extracellular Ca2+. In the absence of Mg2+, ionophore A23187 (1.9 muM) inhibited the effect of adrenaline by approx. 30% without added Ca2+, by approx. 66% with 10 muM-Ca2+ and by more than 90% with concentrations of added Ca2+ greater than 30 muM. However, even in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate](0.1--10 mM), ionophore A23187 caused an inhibition of the cyclic AMP response of at least 30%, which may have been due to a decrease in cell Mg2+ concentration. 5. The addition of EGTA after incubation of cells with ionophore A23187 resulted in a partial reversal of the inhibition of the effect of adrenaline. 6. Inclusion of Mg2+ (2 mM) in the incubation medium antagonized the inhibitory action of ionophore A23187. This effect was most marked when the ionophore A23187 was added to medium containing Mg2+ before the addition of the cells. 7. The cellular content of Mg2+ was decreased by approx. 50% after 20 min incubation with ionophore A23187 (1.9 muM) in the presence of Ca2+ (1 mM) but no Mg2+. When Mg2+ (2 mM) was also present in the medium, ionophore A23187 caused an increase of approx. 80% in cell Mg2+ content. Ionophore A23187 had no significant effect on cell K+ content. 8. Ionophore A23187 caused a decrease in cell ATP content under some conditions. Since effects on cyclic AMP content could also be shown when ATP was not significanlty lowered, it appeared that a decrease in ATP in the cells could not explain the effect of ionophore A23187 on cyclic AMP. 9. Ionophore A23187 (1.9 muM), with 1 mM-Ca2+, did not enhance cyclic AMP degradation in intact cells, suggesting that the effect of ionophore A23187 on cyclic AMP content was mediated through an inhibition of adenylate cyclase rather than a stimulation of cyclic AMP phosphodiesterase. 10. It was concluded that in intact pigeon erythrocytes adenylate cyclase may be inhibited by intracellular concentrations of Ca2+ in the range 1-10 muM.  相似文献   

3.
The effects of extracellular Ca2+ concentration and the putative antagonist of intracellular Ca2+ movement, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) on platelet phospholipase activity and thromboxane B2 synthesis were examined in rabbit platelets stimulated by platelet activating factor, thrombin and ionophore A23187. TMB-8 markedly inhibited the platelet activating factor-induced decrease in [14C]arachidonate content in platelet phsophatidylacholine and phosphatidylinositol, while showing minimal effects on thrombin-induced phospholipase activation. A23187 stimulation of these processes was inhibited to an intermediated degree by TMB-8. In contrast, extracellular Ca2+ removal inhibited phospholipase activity to a similar degree with all three stimuli. Moreover, the threshold concentration of extracelullar Ca2+ for phospholiphase activation, as measured by thromboxane B2 synthesis, was similar for platelet activating factor- and thrombin-stimulated platelets. The data provide evidence that, while platelet activating factor and thrombin may, to some extent, have similar requirements for extracellular Ca2+, they utilize a TMB-8 sensitive step to different degrees during activation of platelet phospholipase.  相似文献   

4.
Human platelets exposed to the Ca2+ ionophore A23187 form cyclo-oxygenase metabolites from liberated arachidonic acid and secrete dense granule substituents such as ADP. I have shown previously that A23187 causes activation of phospholipase A2 and some stimulation of phospholipase C. I now report that, in contrast to the case for thrombin, the activation of phospholipase C in response to ionophore is completely dependent upon the formation of cyclo-oxygenase products and the presence of ADP. The addition of A23187 to human platelets induces a transient drop in the amount of phosphatidylinositol 4,5-bisphosphate, a decrease in the amount of phosphatidylinositol, and the formation of diacylglycerol and phosphatidic acid. In addition, lysophosphatidylinositol and free arachidonic acid are produced. The presence of cyclo-oxygenase inhibitors or agents which remove ADP partially impairs these changes. When both types of inhibitor are present, the changes in phosphatidylinositol 4,5-bisphosphate and the formation of diacylglycerol and phosphatidic acid are blocked entirely, whereas formation of lysophosphatidylinositol and free arachidonic acid are relatively unaffected. The prostaglandin H2 analogue U46619 activates phospholipase C. This stimulation is inhibited partially by competitors for ADP. I conclude that phospholipase C is not activated by Ca2+ in the platelet, and suggest that stimulation is totally dependent upon a receptor coupled event.  相似文献   

5.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

6.
A sensitive fluorimetric enzyme assay was developed for study of activation of glycogen phosphorylase (EC 2.4.1.1) in intact platelets and in platelet extracts. Activity was calculated as AMP independent (activity in the absence of AMP), total (activity in the presence of 1 mM AMP), and AMP dependent (difference between AMP independent and total). The following observations were made with intact rat platelets. (1) Stimulation of platelets with thrombin caused a 7-fold increase in total activity, with increases in both AMP-dependent and AMP-independent activities. Maximum activation was obtained within 10 s after addition of thrombin. (2) The divalent cation ionophore A23187 caused a similar, though less pronounced, activation of phosphorylase. (3) Acceleration of glycogenolysis by inhibition of respiration with cyanide caused similar changes in phosphorylase activity but with the maximum effect observed only after 45 s. (4) Dibutyryl cyclic AMP had two effects; it partially activated phosphorylase and blocked further activation by thrombin, but not A23187. Similar effects were observed with human platelets, but low resting levels of phosphorylase activity could not be maintained so that changes were not as large as with rat platelets. Experiments with extracts of rat platelets gave the following results. (1) Phosphorylase activity in many extracts of non-stimulated platelets could be increased by incubation with Mg2+-ATP and Ca2+; ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) partially inhibited. (2) In some extracts there was essentially no activation by incubation with Mg2+-ATP and Ca2+, but addition of cyclic AMP GAVE PARTIAL ACTIVATIon while addition of rabbit muscle phosphorylase kinase gave full activation. (3) Incubation of extracts of thrombin-stimulated platelets caused conversion of AMP-dependent to AMP-indeptndent activity. It is concluded that platelet phosphorylase exists in an inactive and two active forms. Conversion of the inactive to the active forms and of the AMP-dependent to the AMP-independent form is catalyzed by a kinase(s) that requires Ca2+ for full activity and is activated through a cyclic AMP-mediated process. The major change following physiological stimulation is an increase in both active forms, with little change in their ratio.  相似文献   

7.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

8.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. p-Bromophenacyl bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: arachidonic acid greater than collagen greater than thrombin greater than ionophore A23187. The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A.  相似文献   

9.
Data in the previous paper suggest that epinephrine can mobilize a small pool of arachidonic acid via an enzymatic pathway distinct from phospholipase C and that this pathway is blocked by perturbations that block Na+/H+ exchange. The present studies demonstrate that epinephrine and ADP stimulate a phosphatidylinositol-hydrolyzing phospholipase A2 activity in human platelets. This occurs even when measurable phospholipase C activation, platelet secretion, and secondary aggregation are blocked with the thromboxane A2 receptor antagonist SQ29548. Furthermore, perturbants of Na+/H+ exchange diminish lysophosphatidylinositol production in response to epinephrine, ADP, and thrombin, but not to the Ca2+ ionophore A23187. Artificial alkalinization of the platelet interior with methylamine reverses the effect of the Na+/H+ antiporter inhibitor, ethylisopropylamiloride, on thrombin-stimulated lysolipid production, suggesting that the alkalinization of the platelet interior which would occur secondary to activation of Na+/H+ exchange might play an important role in phospholipase A2 activation. In addition, treatment of platelets with methylamine increases the sensitivity of phospholipase A2 to activation by the Ca2+ ionophore A23187, suggesting that changes in pH and Ca2+ may regulate phospholipase A2 activity synergistically. Finally, epinephrine causes a prompt decrease in platelet-chlortetracyclin fluorescence even in the presence of cyclooxygenase inhibitors, suggesting that epinephrine is able to mobilize membrane-bound Ca2+ independent of phospholipase C activation. Taken together, the data suggest that epinephrine-provoked stimulation of phospholipase A2 activity may occur as a result of Ca2+ mobilization and a concomitant intraplatelet alkalinization resulting from accelerated Na+/H+ exchange.  相似文献   

10.
A significant proportion of the steroidogenic response of isolated rat adrenocortical cells to dibutyryl cyclic AMP does not require extracellular calcium, and this component is profoundly depressed by low concentrations of the putative calcium antagonist, TMB-8. The inhibition is reversed by either the readdition of calcium or the calcium ionophore A23187. The steroidogenic response to pregnenolone, whose mode of action does not require calcium, was not depressed by TMB-8. Corticotropin (ACTH)-induced steroidogenesis, which requires extracellular calcium, was markedly depressed by TMB-8, although enhanced cyclic AMP formation is only slightly depressed by this drug. Adrenal cortical microsomes possess an ATP-dependent 45calcium (45Ca2+) uptake system which responded to EGTA with a rapid efflux of 45Ca2+; EGTA-induced calcium efflux from this microsomal fraction was markedly reduced by a concentration of TMB-8 that blocked dibutyryl cyclic AMP-evoked steroidogenesis. TMB-8 produced a smaller but significant reduction of EGTA-facilitated 45Ca2+ efflux from a mitochondrial-enriched fraction. We interpret these results to mean that TMB-8 blocks the steroidogenic effect of dibutyryl cyclic AMP by interfering with the mobilization of a cellular pool of calcium that is probably localized to the endoplasmic reticulum. The physiological implications of these findings in relation to the complex interactions between calcium and cyclic AMP in adrenal steroidogenesis are discussed.  相似文献   

11.
The stimulation of cultured guinea pig alveolar macrophages by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine, or by the phospholipid inflammatory mediator platelet activating factor (PAF) induced an increase in arachidonic acid release and its cyclooxygenase products. This release, which was mimicked by the association of threshold concentrations of the calcium ionophore A 23187 and of the protein kinase C activator tetradecanoyl phorbol acetate arose mainly from diacyl- and alkyl-acyl-phosphatidylcholine and phosphatidylinositol. Using [1-14C]arachidonic acid-labeled membranes as an endogenous substrate as well as dioleoyl-phosphatidyl [14C]ethanolamine as an exogenous substrate, we showed that phospholipase A2 activity of stimulated macrophages increases upon stimulation. Treatment of macrophages by prostaglandin E2 decreased the arachidonic acid release elicited by the chemotactic peptide and PAF. Furthermore, prostaglandin E2 increased and PAF decreased the cellular content in cyclic AMP. From these results we suggest that an initial stimulation of alveolar macrophages by a bacterial signal initiates the sequential activation of a phospholipase C and of phospholipase A2, leading to the release of PAF and eicosanoids. These mediators may in turn modulate the cell response by increasing or decreasing cyclic AMP, Ca2+, or diacyglycerol macrophage content.  相似文献   

12.
Chelerythrine chloride is an antiplatelet agent isolated from Zanthoxylum simulans. Aggregation and ATP release of washed rabbit platelets caused by ADP, arachidonic acid, PAF, collagen, ionophore A23187 and thrombin were inhibited by chelerythrine chloride. Less inhibition was observed in platelet-rich plasma. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was decreased by chelerythrine chloride. Phosphoinositides breakdown caused by collagen and PAF was completely inhibited by chelerythrine chloride, while that of thrombin was only partially suppressed. Chelerythrine chloride inhibited the intracellular calcium increase caused by arachidonic acid, PAF, collagen and thrombin in quin-2/AM-loaded platelets. The cyclic AMP level of washed platelets did not elevated by chelerythrine chloride. The antiplatelet effect of chelerythrine chloride was not dependent on the incubation time and the aggregability of platelets inhibited by chelerythrine chloride was easily recovered after sedimenting the platelets by centrifugation and then the platelet pellets were resuspended. Chelerythrine chloride did not cause any platelet lysis, since lactate dehydrogenase activity was not found in the supernatant. These data indicate that the inhibitory effect of chelerythrine chloride on rabbit platelet aggregation and release reaction is due to the inhibition on thromboxane formation and phosphoinositides breakdown.  相似文献   

13.
CDP-diglyceride : inositol transferase was inhibited by unsaturated fatty acids. The inhibitory activity decreased in the following order: arachidonic acid greater than linolenic acid greater than linoleic acid greater than oleic acid greater than or equal to palmitoleic acid. Saturated fatty acids such as myristic acid, palmitic acid, and stearic acid had no effect. Calcium ion also inhibited the activity of CDP-diglyceride : inositol transferase. In rat hepatocytes, arachidonic acid inhibited 32P incorporation into phosphatidylinositol and phosphatidic acid without any significant effect on 32P incorporation into phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Ca2+ ionophore A23187 also inhibited 32P incorporation into phosphatidylinositol. However, 32P incorporation into phosphatidic acid was stimulated with Ca2+ ionophore A23187. Phosphatidylinositol-specific phospholipase C was activated by unsaturated fatty acids. Polyunsaturated fatty acids such as arachidonic acid and linolenic acid had a stronger effect than di- and monounsaturated fatty acids. Saturated fatty acids had no effect on the phospholipase C activity. The phospholipase C required Ca2+ for activity. Arachidonic acid and Ca2+ had synergistic effects. These results suggest the reciprocal regulation of phosphatidylinositol synthesis and breakdown by unsaturated fatty acids and Ca2+.  相似文献   

14.
Previous studies have shown that hypertonic mannitol or NaCl increases the release of [3H]arachidonate and immunoreactive prostaglandin E in inner medullary slices incubated in Ca2+-free media containing EGTA. By contrast, the stimulation of these parameters by ionophore A23187 and by arginine-vasopressin are abolished in Ca2+-free media plus EGTA. In the present study, the effects of Ca2+ deprivation and the intracellular Ca2+ antagonist TMB-8 [8-N,N-diethylamino)octyl-3,4,5 -trimethoxybenzoate-HCl) were further examined to assess the Ca2+ dependence of the actions of different stimuli of prostaglandin E synthesis in rat renal inner medulla. Ca2+-free media without EGTA abolished increases in [3H]arachidonate and immunoreactive prostaglandin E release induced by ionophore A23187, but not those induced by arginine-vasopressin, suggesting that different pools of Ca2+ subserve expression of the actions of these two stimuli. At low concentrations, TMB-8 (10-25 microM) inhibited increases in [3H]arachidonate and immunoreactive prostaglandin E release induced by arginine-vasopressin, but did not influence effects of Ca2+ plus ionophore A23187 or hypertonicity on these parameters. At higher concentrations (100-500 microM), TMB-8 suppressed effects of ionophore A23187, hyperosmolar NaCl and mannitol on immunoreactive prostaglandin E and [3H]arachidonate release from slices. The effects of a sub-optimal inhibitory concentration of TMB-8 on ionophore A23187 actions were overcome by increasing Ca2+ in the media from 1.5 to 5 mM. Ca2+ deprivation, or concentrations of EGTA or TMB-8, that were effective in suppressing increases in immunoreactive prostaglandin E induced by ionophore A23187, arginine-vasopressin or hypertonicity, did not modify increases in immunoreactive prostaglandin E induced by exogenous arachidonate. Moreover, in microsomal fractions of inner medulla, TMB-8 suppressed Ca2+-dependent increases in phospholipase A2 and C activities, an effect which was competitive with Ca2+. Thus, Ca2+ deprivation and TMB-8 act at a step in the immunoreactive prostaglandin E synthetic pathway proximal to cyclooxygenase activity, and probably at the level of Ca2+-dependent acyl hydrolase activity. The results with TMB-8 indicate that an intracellular pool of Ca2+ is involved in expression of the actions of hypertonicity to increase [3H]arachidonate release and immunoreactive prostaglandin E in inner medulla.  相似文献   

15.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

16.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

17.
Accumulation of cyclic GMP in estradiol-treated immature guinea pig myometrium was enhanced by carbachol, ionophore A23187, unsaturated fatty acids and their hydroperoxides. Cyclic AMP content was elevated only by arachidonic acid, A23187 and PGI2. Eicosatetraynoic acid (TYA), but not indomethacin prevented all cyclic GMP responses. The effects of A23187 and arachidonate on cyclic AMP were accompanied by a parallel increase (2-3 fold) in the generation of PGI2 by the myometrium. Both events were similarly reduced by indomethacin, TYA, 15-hydroperoxyarachidonic acid and tranylcypromine, suggesting that PGI2 was involved. Omission of Ca2+ or addition of mepacrine or p-bromophenacylbromide abolished the stimulatory effects of A23187 and carbachol on cyclic GMP as well as the A23187-induced elevations in both PGI2 and cyclic AMP generation. Thus, with both exogenous arachidonate as well as with endogenous fatty acid, released through an apparent phospholipase A2-induced activation process, the lipoxygenase pathway was associated with an activation of the cyclic GMP system and the cyclooxygenase pathway, via PGI2 generation, with an activation of the cyclic AMP system. Carbachol failed to alter both cyclic AMP content and the release of PGI2 suggesting a cholinergic receptor-mediated fatty acid release process, selectively coupled to the lipoxygenase route.  相似文献   

18.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

19.
Neurotensin regulation of TSH secretion in the rat   总被引:3,自引:0,他引:3  
The ionophore A23187 (6.7 microM) increased the rates of formation of prostaglandins and cyclic AMP in suspensions of thioglycollate-elicited rat peritoneal macrophages. Both effects were inhibited by the calmodulin blocker trifluoperazine (50 microM) and the calcium channel blocker verapamil (500 microM). Inhibitors of phospholipase A2 and cyclo-oxygenase also blocked both actions of A23187. The stimulated prostaglandin formation was markedly reduced when the cells were preincubated with 8-bromo-cyclic AMP (1mM), dibutyryl cyclic AMP (1mM) or cholera toxin (500ng/ml). Addition of exogenous arachidonic acid (30 microM) alleviated this inhibition. We propose that the effect of A23187 on macrophages includes a 'self-limiting' mechanism whereby newly-synthesized prostaglandins can inhibit, via cyclic AMP, a step(s) prior to the transformation of arachidonic acid and thus modulate their own production.  相似文献   

20.
1. Exposure of platelets to exogenous arachidonic acid results in aggregation and secretion, which are inhibited at high arachidonate concentrations. The mechanisms for this have not been elucidated fully. In our studies in platelet suspensions, peak aggregation and secretion occurred at 2-5 microM-sodium arachidonate, with complete inhibition around 25 microM. 2. In platelets loaded with quin2 or fura-2, the cytoplasmic Ca2+ concentration, [Ca2+]i, rose in the presence of 1 mM-CaCl2 from 60-80 nM to 300-500 nM at 2-5 microM-arachidonate, followed by inhibition to basal values at 25-50 microM. Thromboxane production was not inhibited at 25 microM-arachidonate. Cyclic AMP increased in the presence of theophylline, from 3.5 pmol/10(8) platelets in unexposed platelets to 8 pmol/10(8) platelets at 50 microM-arachidonate; all platelet responses were inhibited with doubling of cyclic AMP contents. 3. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine attenuated the inhibitory effect of arachidonate, suggesting that it is mediated by increased platelet cyclic AMP and that it is unlikely to be due to irreversible damage to platelets. 4. Aspirin or the combined lipoxygenase/cyclo-oxygenase inhibitor BW 755C did not prevent the inhibition by arachidonate of either [Ca2+]i signals or aggregation induced by U46619. 5. Thus high arachidonate concentrations inhibit Ca2+ mobilization in platelets, and this is mediated by stimulation of adenylate cyclase. High arachidonate concentrations influence platelet responses by modulating intracellular concentrations of two key messenger molecules, cyclic AMP and Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号