首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated whether adenosine mediates the decrease in plasma renin activity (PRA) during acute hypoxia. Eight chronically tracheotomized, conscious beagle dogs were kept under standardized environmental conditions and received a low-sodium diet (0.5 mmol.kg body wt(-1).day(-1)). During the experiments, the dogs were breathing spontaneously via a ventilator circuit: first hour, normoxia (21% inspiratory concentration of O(2)); second and third hours, hypoxia (10% inspiratory concentration of O(2)). Each of the eight dogs was studied twice in randomized order in control and theophylline experiments. In theophylline experiments, theophylline, an A(1)-receptor antagonist, was infused intravenously during hypoxia (loading dose: 3 mg/kg within 30 min, maintenance: 0.5 mg. kg(-1). h(-1)). In theophylline experiments, PRA (5.9 +/- 0.8 ng ANG I. ml(-1). h(-1)) and ANG II plasma concentration (15.9 +/- 2.3 pg/ml) did not decrease during hypoxia, whereas plasma aldosterone concentration decreased from 277 +/- 63 to 132 +/- 23 pg/ml (P < 0.05). In control experiments, PRA decreased from 6.8 +/- 0.8 during normoxia to 3.0 +/- 0.5 ng ANG I. ml(-1). h(-1) during hypoxia, ANG II decreased from 13.3 +/- 1.9 to 7.3 +/- 1.9 pg/ml, and plasma aldosterone concentration decreased from 316 +/- 50 to 70 +/- 13 pg/ml (P < 0.05). Thus infusion of the adenosine receptor antagonist theophylline inhibited the suppression of the renin-angiotensin system during acute hypoxia. The decrease in aldosterone occurred independently and is apparently directly related to hypoxia. In conclusion, it is likely that adenosine mediates the decrease in PRA during acute hypoxia in conscious dogs.  相似文献   

2.
Cardiovascular deconditioning occurs in astronauts after spaceflight or in individuals subjected to bed rest. It is characterized by an increased incidence of orthostatic intolerance. The mechanisms responsible for orthostatic intolerance are likely multifactorial and may include hypovolemia, autonomic dysfunction, and vascular and cardiac alterations. The arterial baroreflex is an important compensatory mechanism in the response to an orthostatic stress. In a previous study, we demonstrated that arterial baroreflex mediated sympathoexcitation was blunted in hindlimb-unloaded (HU) rats, a model of cardiovascular deconditioning. The arterial baroreflex also contributes to the regulation of vasoactive hormones including vasopressin and angiotensin II. In the present study, we tested the hypothesis that the neurohumoral response to hypotension is also attenuated in rats after 14 days of hindlimb unloading. To test this hypothesis, the vasodilator diazoxide (15 or 25 mg/kg) or saline (0.9%) was administered to produce hypotension or control conditions, respectively, in conscious HU and control rats. Plasma samples were collected and assayed for vasopressin and plasma renin activity (PRA). Diazoxide (25 mg/kg) produced significant increases in vasopressin and PRA compared with saline controls. HU rats exhibited significantly higher levels of vasopressin at rest and the increase in vasopressin levels during hypotension was enhanced by hindlimb unloading. Neither resting nor hypotension-induced PRA was altered by hindlimb unloading. These data suggest that although baroreflex-mediated sympathoexcitation is blunted by hindlimb unloading, hypotension-induced vasopressin release is enhanced and hypotension-induced PRA is unaffected. Increased circulating vasopressin may serve to compensate for blunted baroreflex regulation of sympathetic nervous activity produced by hindlimb unloading or may actually contribute to it.  相似文献   

3.
Rats were prepared with inflatable balloons at the superior vena cava - right atrium junction. After recovery 1 week later, when blood was taken from conscious, normovolaemic animals plasma renin activity was found not to be influenced by right atrial stretch. Plasma renin activity was then measured in rats in which an extracellular fluid deficit had been produced by peritoneal dialysis against a hyperoncotic, isotonic solution. Although basal plasma renin activity was elevated (6.8 +/- 0.9 from 1.5 +/- 0.2 ng X mL X h, n = 19), no depression was observed in the experimental group after 15 or 90 min of balloon inflation. In rats pretreated with isoprenaline (10 micrograms/kg body wt.) plasma renin activity was also increased over basal levels, but again balloon inflation caused no reduction in plasma renin activity. It would appear that right atrial stretch has little, if any, influence on renin release in the conscious rat.  相似文献   

4.
The administration of a single dose of dl-propranolol, 1 mg/kg i.v., in the conscious unstimulated rabbit produced effective beta-adrenoreceptor blockade (inhibition of isoprenaline tachycardia) for 150 min. During this period there was a positive correlation between plasma concentrations of propranolol and the degree of beta-blockade observed. In a further group of animals treated with propranolol, plasma renin activity (PRA) fell to 50% of control (P < 0.001) within 60 min, the rate of change of PRA also correlating with plasma propranolol levels. Similarly, there were reductions in mean blood pressure (P < 0.025) and heart rate (P < 0.025). Statistical relationships between the fall in blood pressure and either pre-treatment PRA or the change in PRA were consistent with the hypothesis that the hypotensive effect of propranolol was dependent upon its suppression of renin release. However, an alternative possibility that the fall in blood pressure was due to an acute reduction in cardiac output could not be excluded.  相似文献   

5.
M D Johnson 《Life sciences》1985,36(25):2403-2411
Previous experiments have shown that circulating epinephrine stimulates renin secretin and increases plasma renin activity (PRA) when it is infused intravenously, but not when it is infused directly into the renal artery at similar infusion rates. The present experiments were designed to test the hypothesis that the adrenal glands mediate the PRA response to intravenous epinephrine infusion. Accordingly, anesthetized dogs were prepared with either an acute bilateral adrenalectomy or a sham-adrenalectomy procedure. Epinephrine was then infused intravenously into each animal for 45 minutes at a rate of 25 ng X kg-1 X min-1. Time control experiments in which epinephrine was not infused were also conducted. In sham-adrenalectomized dogs, PRA (in nanograms per ml h-1) rose from 4.1 +/- 1.4 in the control period to 13.0 +/- 3.0 during intravenous epinephrine infusion (means +/- SE; p less than 0.01). In adrenalectomized dogs, PRA rose from 2.1 +/- 0.4 during the control period to 5.5 +/- 0.9 during intravenous epinephrine infusion (p less than 0.01). Neither the absolute increments in PRA nor the percent increases in PRA were significantly different between the two groups receiving epinephrine. PRA remained unchanged in time control experiments. These data demonstrate that the adrenal glands need not be present in order for intravenous epinephrine infusion to elicit an increase in PRA. The data do not support the hypothesis, therefore, that epinephrine-induced increases in PRA are initiated by receptors located within the adrenal glands.  相似文献   

6.
J M Pinto  D A Kirby  B Lown 《Life sciences》1990,47(11):917-923
Previous studies indicate that availability of L-tyrosine, the precursor for catecholaminergic neurotransmitters, reduced psychological and physiological effects of stressful situations including hypotension, cold and behavioral stress. The current study examined the effect of L-tyrosine administration on cardiac vulnerability to arrhythmia induced by an infusion of epinephrine in conscious dogs. Heart rate, mean arterial pressure and cardiac electrophysiologic parameters, i.e., effective refractory period and repetitive extrasystole threshold, were measured during infusion of epinephrine (0.3 micrograms/kg/min x 30 min), before and after L-tyrosine (B mg/kg iv bolus). Epinephrine administration significantly increased heart rate by 39% (p less than 0.05), and decreased repetitive extrasystole threshold by 33% (p less than 0.05). Mean arterial pressure and effective refractory period were unchanged. Following L-tyrosine, repetitive extrasystole threshold was restored to baseline levels. Tyrosine may thus ameliorate stress-induced increases in ventricular vulnerability to arrhythmias in conscious animals.  相似文献   

7.
Acute hypoxic pulmonary vasoconstriction (HPV) may be mediated by vasoactive peptides. We studied eight conscious, chronically tracheostomized dogs kept on a standardized dietary sodium intake. Normoxia (40 min) was followed by hypoxia (40 min, breathing 10% oxygen, arterial oxygen pressures 36 +/- 1 Torr) during both control (Con) and losartan experiments (Los; iv infusion of 100 microg. min-1. kg-1 losartan). During hypoxia, minute ventilation (by 0.9 l/min in Con, by 1.3 l/min in Los), cardiac output (by 0.36 l/min in Con, by 0.30 l/min in Los), heart rate (by 11 beats/min in Con, by 30 beats/min in Los), pulmonary artery pressure (by 9 mmHg in both protocols), and pulmonary vascular resistance (by 280 and 254 dyn. s. cm-5 in Con and Los, respectively) increased. Mean arterial pressure and systemic vascular resistance did not change. In Con, PRA decreased from 4.2 +/- 0.7 to 2.5 +/- 0.5 ng ANG I. ml-1. h-1, and plasma ANG II decreased from 11.9 +/- 3.0 to 8.2 +/- 2.1 pg/ml. The renin-angiotensin system is inhibited during acute hypoxia despite sympathetic activation. Under these conditions, ANG II AT1-receptor antagonism does not attenuate HPV.  相似文献   

8.
9.
Intravenous infusion of somatostatin in mongrel dogs caused a significant decrease in the peripheral plasma renin activity (PRA) enhanced by pentobarbital sodium anesthesia or furosemide treatment. However, the inhibitory activity vanished within 10 min after termination of somatostatin infusion. Intrarenal arterial infusion of somatostatin decreased furosemide-enhanced PRA in renal vein by 24.0%, 16.6% and 8.6% in dose of 0.1, 0.5 and 1.0 microgram, respectively. On the other hand, high doses of the peptide (50-200 microgram) failed to decrease. The changes in PRA occurred in the absence of any alteration in blood pressure during the intravenous infusion under furosemide treatment. In an in vitro study, the addition of somatostatin in doses of 0.01 and 0.05 microgram suppressed the renin release in dog renal cortical cell suspension by 74.3% and 53.6%, respectively. Therefore, in both intrarenal arterial infusion and the cell suspension system, somatostatin was increasingly effective in decreasing renin release towards the lower end of the dose range tested. These results suggest that the effect of somatostatin on hyperreninemia may involve an inhibition of renin release at the cell level in the kidney.  相似文献   

10.
N Himori  S Hayakawa  T Ishimori 《Life sciences》1979,24(21):1953-1958
The present experiments were designed to classify the ß-adrenoceptors pertaining to the renin release induced by isoproterenol in conscious dog. Atenolol (ß-1 adrenoceptor antagonist), in oral dose of 6 mg/kg, produced a significant inhibition of renin release caused by isoproterenol. This dose of atenolol suppressed effectively the tachycardia of isoproterenol. On the other hand, the renin release produced by isoproterenol was not modified significantly by a ß-2 adrenoceptor antagonist, IPS-339, at a oral dose of 3 mg/kg which fully antagonized hypotensive response to isoproterenol. These results strongly suggest that the renin release induced by isoproterenol is largely due to stimulation of ß-1 type adrenoceptors.  相似文献   

11.
The effects of endogenous Plasma Renin Substrate (PRS) on the relationship between Plasma Renin Activity (PRA) and the Plasma Renin Concentration (PRC) have been studied in hyperthyroid rats, by I-triiodothyronine (T3) administration and in hypothyroid rats, by propylthiouracil (PTU) treatment, to clarify if PRA changes are an adequate index for evaluating the renin-angiotensin changes during the alterations in the thyroid function. Although in experimental situations studied the induced variation on PRC explains a 62 per cent of the changes in PRA, finding a good lineal correlation between both parameters (r = 0.79, P less than 0.001). Not only does PRS play an important role on the kinetic of the enzymatic reaction but also explains jointly with PRC up to a 85 per cent of PRA alterations. PRS changes become more important during thyrotoxicosis where they limit in a higher degree the velocity of reaction due to inverse relationship between PRC and PRS (r = 0.74, P less than 0.001).  相似文献   

12.
13.
14.
15.
16.
The authors elaborated a method of determination of the plasma renin inhibitor based on the statement that with successive dilution of the plasma the velocity of the renin + substrate reaction in the presence of an inhibitor fell more slowly than the extent of dilution, and, on the contrary, in the plasma without any inhibitor the rate of the reaction decreased more than the value of the plasma dilution. This statement follows from the equations of the reaction suggested by Dixon and Webb (1966). With the aid of this method the presence of the renin inhibitor in the plasma was found in 8 of 19 intact dogs examined.  相似文献   

17.
18.
An increase in atrial pressure has been shown to cause an increase in the concentration of atrial peptides (atriopeptin) in plasma. We therefore hypothesized that a reduction in atrial pressure would decrease the concentration of atriopeptin in plasma. In formulating this hypothesis we assumed that changes in the concentration of other circulating hormones or changes in cardiac nerve activity during hemorrhage would not affect the secretion of atriopeptin. To test the hypothesis, we bled sham-operated conscious dogs at a rate of 0.8 ml.kg-1.min-1 to decrease right and left atrial pressures. Hemorrhage was continued until a total of 30 ml of blood per kilogram body weight had been removed. Identical experiments were performed on conscious cardiac-denervated dogs. The concentration of plasma atriopeptin was decreased in each group of dogs after 10 ml of blood per kilogram of body weight had been removed, but the decrease achieved statistical significance only in the cardiac-denervated dogs. Further hemorrhage, however, produced no further decreases in circulating atriopeptin in either group even though atrial pressures continued to decline as more blood was removed. A comparison of the atriopeptin response to hemorrhage revealed no significant difference between the sham-operated and cardiac-denervated dogs, thus providing no evidence for a specific effect of cardiac nerves on atriopeptin secretion during hemorrhage. Our results demonstrate that the relationship between atrial pressure and plasma atriopeptin that has been observed repeatedly during atrial stretch is not evident during relatively slow, prolonged hemorrhage. There is, however, a small decline in circulating atriopeptin during the initial stage of hemorrhage that could be of biological significance.  相似文献   

19.
Evidence of biological activity of fragments of ANG II is accumulating. Fragments considered being inactive degradation products might mediate actions previously attributed to ANG II. The study aimed to determine whether angiotensin fragments exert biological activity when administered in amounts equimolar to physiological doses of ANG II. Cardiovascular, endocrine, and renal effects of ANG II, ANG III, ANG IV, and ANG-(1-7) (6 pmol.kg-1.min-1) were investigated in conscious dogs during acute inhibition of angiotensin I-converting enzyme (enalaprilate) and aldosterone (canrenoate). Furthermore, ANG III was investigated by step-up infusion (30 and 150 pmol.kg-1.min-1). Arterial plasma concentrations [ANG immunoreactivity (IR)] were determined by an ANG II antibody cross-reacting with ANG III and ANG IV. Metabolic clearance rates were higher for ANG III and ANG IV (391 +/- 19 and 274 +/- 13 ml.kg-1.min-1, respectively) than for ANG II (107 +/- 13 ml.kg-1.min-1). ANG II increased ANG IR by 60 +/- 7 pmol/ml, blood pressure by 30%, increased plasma aldosterone markedly (to 345 +/- 72 pg/ml), and plasma vasopressin transiently, while reducing glomerular filtration rate (40 +/- 2 to 33 +/- 2 ml/min), sodium excretion (50 +/- 7 to 16 +/- 4 micromol/min), and urine flow. Equimolar amounts of ANG III induced similar antinatriuresis (57 +/- 8 to 19 +/- 3 micromol/min) and aldosterone secretion (to 268 +/- 71 pg/ml) at much lower ANG IR increments ( approximately 1/7) without affecting blood pressure, vasopressin, or glomerular filtration rate. The effects of ANG III exhibited complex dose-response relations. ANG IV and ANG-(1-7) were ineffective. It is concluded that 1) plasma clearances of ANG III and ANG IV are higher than those of ANG II; 2) ANG III is more potent than ANG II in eliciting immediate sodium and potassium retention, as well as aldosterone secretion, particularly at low concentrations; and 3) the complexity of the ANG III dose-response relationships provides indirect evidence that several effector mechanisms are involved.  相似文献   

20.
In anaesthetized dog, right atrial stretch leads in the first five minutes to a decrease in plasma renin activity, when measured in inferior vena cava just above the renal veins. Bilateral cervical vagotomy increases plasma renin activity. After vagotomy, atrial stretch no longer has any effect on plasma renin activity. The results support the hypothesis of a control of renin secretion originating from atrial volume receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号