首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hidalgo P  Neely A 《Cell calcium》2007,42(4-5):389-396
For a long time the auxiliary beta-subunit of voltage-gated calcium channels was thought to be engaged exclusively in the regulation of calcium channel function, including gating, intracellular trafficking, assembly and membrane expression. The beta-subunit belongs to the membrane-associated guanylate kinase class of scaffolding proteins (MAGUK) that comprises a series of protein interaction motifs. Two such domains, a Src homology 3 and a guanylate kinase domain are present in the beta-subunit. Recently, it was shown that this subunit interacts with a variety of proteins and regulates diverse cellular processes ranging from gene expression to hormone secretion and endocytosis. In light of these new findings, the beta-subunit deserves to be promoted to the category of multifunctional regulatory protein. Some of these new functions support a tighter regulation of calcium influx through voltage-gated calcium channels and others apparently serve channel unrelated processes. Here we discuss a variety of protein-protein interactions held by the beta-subunit of voltage-gated calcium channels and their functional consequences. Certainly the identification of additional binding partners and effector pathways will help to understand how the different beta-subunit-mediated processes are interwoven.  相似文献   

2.
The beta-subunit of voltage-gated Ca(2+) channels plays a dual role in chaperoning the channels to the plasma membrane and modulating their gating. It contains five distinct modular domains/regions, including the variable N- and C-terminus, a conserved Src homology 3 (SH3) domain, a conserved guanylate kinase (GK) domain, and a connecting variable and flexible HOOK region. Recent crystallographic studies revealed a highly conserved interaction between the GK domain and alpha interaction domain (AID), the high-affinity binding site in the pore-forming alpha(1) subunit. Here we show that the AID-GK domain interaction is necessary for beta-subunit-stimulated Ca(2+) channel surface expression and that the GK domain alone can carry out this function. We also examined the role of each region of all four beta-subunit subfamilies in modulating P/Q-type Ca(2+) channel gating and demonstrate that the beta-subunit functions modularly. Our results support a model that the conserved AID-GK domain interaction anchors the beta-subunit to the alpha(1) subunit, enabling alpha(1)-beta pair-specific low-affinity interactions involving the N-terminus and the HOOK region, which confer on each of the four beta-subunit subfamilies its distinctive modulatory properties.  相似文献   

3.
Voltage-dependent calcium channels constitute the main entry pathway for calcium into excitable cells. They are heteromultimers formed by an α(1) pore-forming subunit (Ca(V)α(1)) and accessory subunits. To achieve a precise coordination of calcium signals, the expression and activity of these channels is tightly controlled. The accessory β-subunit (Ca(V)β), a membrane associated guanylate kinase containing one guanylate kinase (β-GK) and one Src homology 3 (β-SH3) domain, has antagonistic effects on calcium currents by regulating different aspects of channel function. Although β-GK binds to a conserved site within the α(1)-pore-forming subunit and facilitates channel opening, β-SH3 binds to dynamin and promotes endocytosis. Here, we investigated the molecular switch underlying the functional duality of this modular protein. We show that β-SH3 homodimerizes through a single disulfide bond. Substitution of the only cysteine residue abolishes dimerization and impairs internalization of L-type Ca(V)1.2 channels expressed in Xenopus oocytes while preserving dynamin binding. Covalent linkage of the β-SH3 dimerization-deficient mutant yields a concatamer that binds to dynamin and restores endocytosis. Moreover, using FRET analysis, we show in living cells that Ca(V)β form oligomers and that this interaction is reduced by Ca(V)α(1). Association of Ca(V)β with a polypeptide encoding the binding motif in Ca(V)α(1) inhibited endocytosis. Together, these findings reveal that β-SH3 dimerization is crucial for endocytosis and suggest that channel activation and internalization are two mutually exclusive functions of Ca(V)β. We propose that a change in the oligomeric state of Ca(V)β is the functional switch between channel activator and channel internalizer.  相似文献   

4.
The β-subunit of voltage-gated Ca2+ channels is essential for trafficking the channels to the plasma membrane and regulating their gating. It contains a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain, which interact intramolecularly. We investigated the structural underpinnings of this intramolecular coupling and found that in addition to a previously described SH3 domain β strand, two structural elements are crucial for maintaining a strong and yet potentially modifiable SH3-GK intramolecular coupling: an intrinsically weak SH3-GK interface and a direct connection of the SH3 and GK domains. Alterations of these elements uncouple the two functions of the β-subunit, degrading its ability to regulate gating while leaving its chaperone effect intact.  相似文献   

5.
Voltage-gated calcium channels mediate the influx of Ca(2+) ions into eukaryotic cells in response to membrane depolarization. They are hetero-multimer membrane proteins formed by at least three subunits, the poreforming alpha(1)-subunit and the auxiliary beta- and alpha(2)delta-subunits. The beta-subunit is essential for channel performance because it regulates two distinct features of voltage-gated calcium channels, the surface expression and the channel activity. Four beta-subunit genes have been cloned, beta(1-4), with molecular masses ranging from 52 to 78 kDa, and several splice variants have been identified. The beta(1b)-subunit, expressed at high levels in mammalian brain, has been used extensively to study the interaction between the pore forming alpha(1)- and the regulatory beta-subunit. However, structural characterization has been impaired for its tendency to form aggregates when expressed in bacteria. We applied an on-column refolding procedure based on size exclusion chromatography to fold the beta(1b)-subunit of the voltage gated-calcium channels from Escherichia coli inclusion bodies. The beta(1b)-subunit refolds into monomers, as shown by sucrose gradient analysis, and binds to a glutathione S-transferase protein fused to the known target in the alpha(1)-subunit (the alpha-interaction domain). Using the cut-open oocyte voltage clamp technique, we measured gating and ionic currents in Xenopus oocytes expressing cardiac alpha(1)-subunit (alpha(1C)) co-injected with folded-beta(1b)-protein or beta(1b)-cRNA. We demonstrate that the co-expression of the alpha(1C)-subunit with either folded-beta(1b)-protein or beta(1b)-cRNA increases ionic currents to a similar extent and with no changes in charge movement, indicating that the beta(1b)-subunit primarily modulates channel activity, rather than expression.  相似文献   

6.
Calcium channel function regulated by the SH3-GK module in beta subunits   总被引:5,自引:0,他引:5  
beta subunits of voltage-gated calcium channels (VGCCs) regulate channel trafficking and function, thereby shaping the intensity and duration of intracellular changes in calcium. beta subunits share limited sequence homology with the Src homology 3-guanylate kinase (SH3-GK) module of membrane-associated guanylate kinases (MAGUKs). Here, we show biochemical similarities between beta subunits and MAGUKs, revealing important aspects of beta subunit structure and function. Similar to MAGUKs, an SH3-GK interaction within beta subunits can occur both intramolecularly and intermolecularly. Mutations that disrupt the SH3-GK interaction in beta subunits alter channel inactivation and can inhibit binding between the alpha(1) and beta subunits. Coexpression of beta subunits with complementary mutations in their SH3 and GK domains rescues these deficits through intermolecular beta subunit assembly. In MAGUKs, the SH3-GK module controls protein scaffolding. In beta subunits, this module regulates the inactivation of VGCCs and provides an additional mechanism for tuning calcium responsiveness.  相似文献   

7.
Besides opening and closing, high voltage-activated calcium channels transit to a nonconducting inactivated state from which they do not re-open unless the plasma membrane is repolarized. Inactivation is critical for temporal regulation of intracellular calcium signaling and prevention of a deleterious rise in calcium concentration. R-type high voltage-activated channels inactivate fully in a few hundred milliseconds when expressed alone. However, when co-expressed with a particular β-subunit isoform, β2a, inactivation is partial and develops in several seconds. Palmitoylation of a unique di-cysteine motif at the N terminus anchors β2a to the plasma membrane. The current view is that membrane-anchored β2a immobilizes the channel inactivation machinery and confers slow inactivation phenotype. β-Subunits contain one Src homology 3 and one guanylate kinase domain, flanked by variable regions with unknown structures. Here, we identified a short polybasic segment at the boundary of the guanylate kinase domain that slows down channel inactivation without relocating a palmitoylation-deficient β2a to the plasma membrane. Substitution of the positively charged residues within this segment by alanine abolishes its slow inactivation-conferring phenotype. The linker upstream from the polybasic segment, but not the N- and C-terminal variable regions, masks the effect of this determinant. These results reveal a novel mechanism for inhibiting voltage-dependent inactivation of R-type calcium channels by the β2a-subunit that might involve electrostatic interactions with an unknown target on the channel''s inactivation machinery or its modulatory components. They also suggest that intralinker interactions occlude the action of the polybasic segment and that its functional availability is regulated by the palmitoylated state of the β2a-subunit.  相似文献   

8.
Auxiliary beta-subunits bound to the cytoplasmic alpha(1)-interaction domain of the pore-forming alpha(1C)-subunit are important modulators of voltage-gated Ca(2+) channels. The underlying mechanisms are not yet well understood. We investigated correlations between differential modulation of inactivation by beta(1a)- and beta(2)- subunits and structural responses of the channel to transition into distinct functional states. The NH(2)-termini of the alpha(1C)- and beta-subunits were fused with cyan or yellow fluorescent proteins, and functionally coexpressed in COS1 cells. Fluorescence resonance energy transfer (FRET) between them or with membrane-trapped probes was measured in live cells under voltage clamp. It was found that in the resting state, the tagged NH(2)-termini of the alpha(1C)- and beta-subunit fluorophores are separated. Voltage-dependent inactivation generates strong FRET between alpha(1C) and beta(1a) suggesting mutual reorientation of the NH(2)-termini, but their distance vis-à-vis the plasma membrane is not appreciably changed. These voltage-gated rearrangements were substantially reduced when the beta(1a)-subunit was replaced by beta(2). Differential beta-subunit modulation of inactivation and of FRET between alpha(1C) and beta were eliminated by inhibition of the slow inactivation. Thus, differential beta-subunit modulation of inactivation correlates with the voltage-gated motion between the NH(2)-termini of alpha(1C)- and beta-subunits and targets the mechanism of slow voltage-dependent inactivation.  相似文献   

9.
High voltage-gated calcium channels consist of a pore-forming subunit (alpha(1)) and three nonhomologous subunits (alpha(2)/delta, beta, and gamma). Although it is well established that the beta-subunit promotes traffic of channels to the plasma membrane and modifies their activity, the reversible nature of the interaction with the alpha(1)-subunit remains controversial. Here, we address this issue by examining the effect of purified beta(2a) protein on Ca(V)1.2 and Ca(V)2.3 channels expressed in Xenopus oocytes. The beta(2a)-subunit binds to the alpha(1)-interaction domain (AID) in vitro, and when injected into oocytes, it shifts the voltage dependence of activation and increases charge movement to ionic current coupling of Ca(V)1.2 channels. This increase depended on the integrity of AID but was not abolished by bafilomycin, demonstrating that the alpha(1)-beta interaction through the AID site can take place at the plasma membrane. Furthermore, injection of beta(2a) protein inhibited inactivation of Ca(V)2.3 channels and converted fast inactivating Ca(V)2.3/beta(1b) channels to slow inactivating channels. Inhibition of inactivation required larger concentration of beta(2a) in oocytes expressing Ca(V)2.3/beta(1b) channels than expressing Ca(V)2.3 alone but reached the same maximal level as expected for a competitive interaction through a single binding site. Together, our data show that the alpha(1)-beta interaction is reversible in intact cells and defines calcium channels beta-subunits as regulatory proteins rather than stoichiometric subunits.  相似文献   

10.
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.  相似文献   

11.
RGK proteins (Kir/Gem, Rad, Rem, and Rem2) form a small subfamily of the Ras superfamily. Despite a conserved GTP binding core domain, several differences suggest that structure, mechanism of action, and functional regulation differ from Ras. RGK proteins down-regulate voltage-gated calcium channel activity by binding in a GTP-dependent fashion to the Cavbeta subunits. Mutational analysis combined with homology modeling reveal a novel effector binding mechanism distinct from that of other Ras GTPases. In this model the Switch 1 region acts as an allosteric activator that facilitates electrostatic interactions between Arg-196 in Kir/Gem and Asp-194, -270, and -272 in the nucleotide-kinase (NK) domain of Cavbeta3 and wedging Val-223 and His-225 of Kir/Gem into a hydrophobic pocket in the NK domain. Kir/Gem interacts with a surface on the NK domain that is distinct from the groove where the voltage-gated calcium channel Cavalpha1 subunit binds. A complex composed of the RGK protein and the Cavbeta3 and Cav1.2 subunits could be revealed in vivo using coimmunoprecipitation experiments. Intriguingly, docking of the RGK protein to the NK domain of the Cavbeta subunit is reminiscent of the binding of GMP to guanylate kinase.  相似文献   

12.
13.
Ca(2+) influx through voltage-gated channels initiates the exocytotic fusion of synaptic vesicles to the plasma membrane. Here we show that RIM binding proteins (RBPs), which associate with Ca(2+) channels in hair cells, photoreceptors, and neurons, interact with alpha(1D) (L type) and alpha(1B) (N type) Ca(2+) channel subunits. RBPs contain three Src homology 3 domains that bind to proline-rich motifs in alpha(1) subunits and Rab3-interacting molecules (RIMs). Overexpression in PC12 cells of fusion proteins that suppress the interactions of RBPs with RIMs and alpha(1) augments the exocytosis triggered by depolarization. RBPs may regulate the strength of synaptic transmission by creating a functional link between the synaptic-vesicle tethering apparatus, which includes RIMs and Rab3, and the fusion machinery, which includes Ca(2+) channels and the SNARE complex.  相似文献   

14.
15.
Dynamin, a 100 kDa GTPase, is critical for endocytosis, synaptic transmission and neurogenesis. Endocytosis accompanies receptor processing and plays an essential role in attenuating receptor tyrosine kinase signal transduction. Dynamin has been demonstrated to be involved in the endocytic processing at the cell surface and may play a general role in coupling receptor activation to endocytosis. Src homology (SH) domain dependent protein-protein interactions are important to tyrosine kinase receptor signal transduction. The C-terminus of dynamin contains two clusters of SH3 domain binding proline motifs; these motifs may interact with known SH3 domain proteins during tyrosine kinase receptor activation. We demonstrate here that SH3 domain-containing signal transduction proteins, such as phospholipase C gamma-1 (PLC gamma-1), do indeed bind to dynamin in a growth factor inducible manner. The induction of PLC gamma-1 binding to dynamin occurs within minutes of the addition of platelet derived growth factor (PDGF) to cells. Binding of these signal transduction proteins to dynamin involves specific sorting to individual proline motif clusters and appears to be responsible for co-immunoprecipitation of tyrosine phosphorylated PDGF receptors with dynamin following PDGF stimulation of mammalian cells. The binding of dynamin to SH3 domain-containing proteins may therefore be important for formation of the protein complex required for the endocytic processing of activated tyrosine kinase receptors.  相似文献   

16.
The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the clustering of these proteins. Although the function of the NH2-terminal PDZ domains is relatively well characterized, the function of the Src homology 3 (SH3) domain and the guanylate kinase-like (GK) domain in the COOH-terminal half of PSD-95 has remained obscure. We now report the isolation of a novel synaptic protein, termed GKAP for guanylate kinase-associated protein, that binds directly to the GK domain of the four known members of the mammalian PSD-95 family. GKAP shows a unique domain structure and appears to be a major constituent of the postsynaptic density. GKAP colocalizes and coimmunoprecipitates with PSD-95 in vivo, and coclusters with PSD-95 and K+ channels/ NMDA receptors in heterologous cells. Given their apparent lack of guanylate kinase enzymatic activity, the fact that the GK domain can act as a site for protein– protein interaction has implications for the function of diverse GK-containing proteins (such as p55, ZO-1, and LIN-2/CASK).  相似文献   

17.
The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.  相似文献   

18.
The caspase recruitment domain (CARD) is a protein-binding module that mediates the assembly of CARD-containing proteins into apoptosis and NF-kappaB signaling complexes. We report here that CARD protein 11 (CARD11) and CARD protein 14 (CARD14) are novel CARD-containing proteins that belong to the membrane-associated guanylate kinase (MAGUK) family, a class of proteins that functions as molecular scaffolds for the assembly of multiprotein complexes at specialized regions of the plasma membrane. CARD11 and CARD14 have homologous structures consisting of an N-terminal CARD domain, a central coiled-coil domain, and a C-terminal tripartite domain comprised of a PDZ domain, an Src homology 3 domain, and a GUK domain with homology to guanylate kinase. The CARD domains of both CARD11 and CARD14 associate specifically with the CARD domain of BCL10, a signaling protein that activates NF-kappaB through the IkappaB kinase complex in response to upstream stimuli. When expressed in cells, CARD11 and CARD14 activate NF-kappaB and induce the phosphorylation of BCL10. These findings suggest that CARD11 and CARD14 are novel MAGUK family members that function as upstream activators of BCL10 and NF-kappaB signaling.  相似文献   

19.
Although most L-type calcium channel alpha(1C) subunits isolated from heart or brain are approximately 190-kDa proteins that lack approximately 50 kDa of the C terminus, the C-terminal domain is present in intact cells. To test the hypothesis that the C terminus is processed but remains functionally associated with the channels, expressed, full-length alpha(1C) subunits were cleaved in vitro by chymotrypsin to generate a 190-kDa C-terminal truncated protein and C-terminal fragments of 30-56 kDa. These hydrophilic C-terminal fragments remained membrane-associated. A C-terminal proline-rich domain (PRD) was identified as the mediator of membrane association. The alpha(1C) PRD bound to SH3 domains in Src, Lyn, Hck, and the channel beta(2) subunit. Mutant alpha(1C) subunits lacking either approximately 50 kDa of the C terminus or the PRD produced increased barium currents through the channels, demonstrating that these domains participate in the previously described (Wei, X., Neely, a., Lacerda, A. E. Olcese, r., Stefani, E., Perez-Reyes, E., and Birnbaumer, L. (1994) J. Biol. Chem. 269, 1635-1640) inhibition of channel function by the C terminus.  相似文献   

20.
Effector molecules such as calmodulin modulate the interactions of membrane-associated guanylate kinase homologs (MAGUKs) and other scaffolding proteins of the membrane cytoskeleton by binding to the Src homology 3 (SH3) domain, the guanylate kinase (GK) domain, or the connecting HOOK region of MAGUKs. Using surface plasmon resonance, we studied the interaction of members of all four MAGUK subfamilies--synapse-associated protein 97 (SAP97), calcium/calmodulin-dependent serine protein kinase (CASK), membrane palmitoylated protein 2 (MPP2), and zona occludens (ZO) 1--and calmodulin to determine interaction affinities and localize the binding site. The SH3-GK domains of the proteins and derivatives thereof were expressed in E. coli and purified. In all four proteins, high-affinity calmodulin binding was identified. CASK was shown to contain a Ca2+-dependent calmodulin binding site within the HOOK region, overlapping with a protein 4.1 binding site. In ZO1, a Ca2+-dependent calmodulin binding site was detected within the GK domain. The equilibrium dissociation constants for MAGUK-calmodulin interaction were found to range from 50 nM to 180 nM. Sequence analyses suggest that binding sites for calmodulin have evolved independently in at least three subfamilies. For ZO1, pulldown of GST-calmodulin was shown to occur in a calcium-dependent manner; moreover, molecular modeling and sequence analyses predict conserved basic residues to be exposed on one side of a helix. Thus, calmodulin binding appears to be a common feature of MAGUKs, and Ca2+-activated calmodulin may serve as a general regulator to affect the interactions of MAGUKs and various components of the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号