首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ProjectSerum samples may not be appropriate to assess lead (Pb) concentrations because they may contain artificially higher Pb concentrations compared with those measured in plasma samples. Here, we compared Pb concentrations in serum versus heparin plasma separated from blood collected with or without vacuum. We have also examined the effects of sample standing time on Pb concentrations measured in serum, heparin plasma, and EDTA plasma.ProcedureWe studied plasma and serum samples from twelve healthy subjects. Blood samples were collected via venous drainage phlebotomy with and without vacuum into trace metal free tubes containing no anticoagulants (serum), or lithium heparin, or EDTA (to obtain plasma). Variable sample standing times (0, 5, and 30 min) prior to centrifugation were allowed. Plasma and serum Pb and iron concentrations were determined by inductively coupled plasma mass spectrometry. Plasma and serum cell-free hemoglobin concentrations were measured.ResultsPb concentrations in serum and in heparin plasma from blood samples collected with or without vacuum were similar and not associated with significant changes in iron or hemoglobin concentrations. The sample standing time (up to 30 min) did not affect Pb concentrations in serum or in heparin plasma, which were approximately 50% lower than those found in EDTA plasma.ConclusionsSerum or heparin plasma separated from blood samples collected via venous phlebotomy with or without vacuum are appropriate medium to assess Pb concentrations, independently of the sample standing time.  相似文献   

2.
G A Pearce  K F Brown 《Life sciences》1983,33(15):1457-1466
Protein binding determination in post heparin plasma samples is complicated by the continued post heparin lipase activity, in vitro, during the binding analysis. The decomposition of lipoproteins and accumulation of nonesterified fatty acids (NEFA) results in artifically elevated free fractions of many drugs. This artefact is particularly accentuated in haemodialysis patients who are frequently hypertriglyceridaemic and receive large doses of heparin. Rapid heat treatment (60 degrees for 15 min) of plasma from heparinized uraemic subjects is shown to inhibit the in vitro lipolysis occurring during 2 hours of equilibrium dialysis at 37 degrees (ED). Mean NEFA concentrations in heat treated plasma after ED (means = 400 +/- 141 mumol/L) were not different (p greater than 0.05, n = 9) from the baseline values in fresh plasma (means 351 +/- 117 mumol/L) but were considerably less (p less than 0.005) than NEFA levels in untreated plasma after ED (means = 1025 +/- 523 mumol/L). The degree of in vitro lipolysis inhibition (92 +/- 6.6%) was very much greater than using the chemical inhibitors phenyl methyl sulphonyl fluoride, EDTA, Triton X100 or protamine sulphate. Heat treatment at 60 degrees for 15 min increased the percentage of free 14C ibuprofen in 3.5% isolated human serum albumin from 0.34% to 0.62%. Reduced binding as a result of heat treatment was not observed however in whole plasma. The percentage free ibuprofen in heat treated, whole plasma from both heparinized and non heparinized subjects (means = 1.22 +/- 0.19; n = 29) was not different (p greater than 0.05) from the percentage free determined in plasma from a non heparinized group (means = 1.16 +/- 0.23; n = 15). In contrast the % free ibuprofen in untreated plasma from heparinized subjects was markedly higher (means = 1.56 +/- 0.41; n = 24; p less than 0.05). There was a strong correlation between % free ibuprofen and plasma NEFA concentration (r = 0.8; p less than 0.005; n = 68). The heat treatment of plasma for 15 min at 60 degrees is proposed as an effective means of controlling heparin induced lipolysis in vitro and may be valuable in overcoming the post heparin binding artefact.  相似文献   

3.
Evidence suggests lipid abnormalities may contribute to elevated blood pressure, increased vascular resistance, and reduced arterial compliance among insulin-resistant subjects. In a study of 11 normal volunteers undergoing 4-h-long infusions of Intralipid and heparin to raise plasma nonesterified fatty acids (NEFAs), we observed increases of blood pressure. In contrast, blood pressure did not change in these same volunteers during a 4-h infusion of saline and heparin. To better characterize the hemodynamic responses to Intralipid and heparin, another group of 21 individuals, including both lean and obese volunteers, was studied after 3 wk on a controlled diet with 180 mmol sodium/day. Two and four hours after starting the infusions, plasma NEFAs increased by 134 and 111% in those receiving Intralipid and heparin, P < 0.01, whereas plasma NEFAs did not change in the first group of normal volunteers who received saline and heparin. The hemodynamic changes in lean and obese subjects in the second study were similar, and the results were combined. The infusion of Intralipid and heparin induced a significant increase in systolic (13.5 +/- 2.1 mmHg) and diastolic (8.0 +/- 1.5 mmHg) blood pressure as well as heart rate (9.4 +/- 1.4 beats/min). Small and large artery compliance decreased, and systemic vascular resistance rose. These data raise the possibility that lipid abnormalities associated with insulin resistance contribute to the elevated blood pressure and heart rate as well as the reduced vascular compliance observed in subjects with the cardiovascular risk factor cluster.  相似文献   

4.
We examined the possible alteration of circulating transforming growth factor-beta1 (TGF-beta1) concentrations in a time-dependent fashion in human plasma. Plasma TGF-beta1 was measured three times at 2 week-intervals from each of 12 healthy participants. Platelet factor 4 (PF4) was measured in parallel with TGF-beta1 to estimate the degree of platelet degranulation. TGF-beta1 levels of the second and third plasma samples, in which PF4s were measured as < approximately 1000 IU/ml, were relatively low and fell in a narrow range. However, TGF-beta1 levels of the first samples, in most of which PF4s were > approximately 1000 IU/ml, appeared much higher and more variable than those of the second or third samples. These results indicate that the platelet degranulation accounted for the higher TGF-beta1 levels in the first samples, and thus did not support our initial assumption. We, nevertheless, could propose a useful guidance in the assessment of TGF-beta1 levels in plasma. When the PF4 level is measured as < approximately 1000 IU/ml under our assay conditions, the TGF-beta1 level in a given plasma sample might be accepted as a reliable value considering the effect of platelet degranulation on TGF-beta1 level.  相似文献   

5.
Metabolomics and lipidomics are of fundamental importance to personalized healthcare. Particularly the analysis of bioactive lipids is of relevance to a better understanding of various diseases. Within clinical routines, blood derived samples are widely used for diagnostic and research purposes. Hence, standardized and validated procedures for blood collection and storage are mandatory, in order to guarantee sample integrity and relevant study outcomes. We here investigated different plasma storage conditions and their effect on plasma fatty acid and oxylipid levels. Our data clearly indicate the importance of storage conditions for plasma lipidomic analysis. Storage at very low temperature (?80?°C) and the addition of methanol directly after sampling are the most important measures to avoid ex vivo synthesis of oxylipids. Furthermore, we identified critical analytes being affected under certain storage conditions. Finally, we carried out chiral analysis and found possible residual enzymatic activity to be one of the contributors to the ex vivo formation of oxylipids even at ?20?°C.  相似文献   

6.
The effects of two methods of specimen immobilization (MS 222 anaesthesia and stunning), two types of anticoagulant (EDTA and heparin), two storage temperature ranges (0–2°C and 22–25°C) and four sample storage periods (0, 1, 3, and 24 h) on the haemoglobin, haematocrit, plasma and packed cell sodium, potassium and chloride ion concentrations and packed cell ATP levels of rainbow trout were examined. Stored samples exhibited increases in cell volume, net transfer of sodium and chloride from plasma into cells, net loss of potassium to plasma and rapid depletion of ATP. Room temperature conditions and prolonged storage exacerbated these changes. Use of EDTA, particularly in combination with MS 222, frequently led to haemolysis. Least change in most variables was observed in samples drawn from stunned specimens, treated with heparin and refrigerated before use or preparation for deep cold storage.  相似文献   

7.
During the fasting state, insulin reduces nonesterified fatty acid (NEFA) appearance in the systemic circulation mostly by suppressing intracellular lipolysis in the adipose tissue. In the postprandial state, insulin may also control NEFA appearance through enhanced trapping into the adipose tissue of NEFA derived from intravascular triglyceride lipolysis. To determine the contribution of suppression of intracellular lipolysis in the modulation of plasma NEFA metabolism by insulin during enhanced intravascular triglyceride lipolysis, 10 healthy nonobese subjects underwent pancreatic clamps at fasting vs. high physiological insulin level with intravenous infusion of heparin plus Intralipid. Nicotinic acid was administered orally during the last 2 h of each 4-h clamp to inhibit intracellular lipolysis and assess insulin's effect on plasma NEFA metabolism independently of its effect on intracellular lipolysis. Stable isotope tracers of palmitate, acetate, and glycerol were used to assess plasma NEFA metabolism and total triglyceride lipolysis in each participant. The glycerol appearance rate was similar during fasting vs. high insulin level, but plasma NEFA levels were significantly lowered by insulin. Nicotinic acid significantly blunted the insulin-mediated suppression of plasma palmitate appearance and oxidation rates by approximately 60 and approximately 70%, respectively. In contrast, nicotinic acid did not affect the marked stimulation of palmitate clearance by insulin. Thus most of the insulin-mediated reduction of plasma NEFA appearance and oxidation can be explained by suppression of intracellular lipolysis during enhanced intravascular triglyceride lipolysis in healthy humans. Our results also suggest that insulin may affect plasma NEFA clearance independently of the suppression of intracellular lipolysis.  相似文献   

8.
Dynamics of nonesterified fatty acid (NEFA) metabolism in humans requires quantification if we are to understand the etiology of such diseases as type 1 and 2 diabetes, as well as metabolic syndrome and obesity, or if we are to elucidate the mechanism of action of various interventions. We present a new compartmental model that employs the pattern of plasma glucose concentrations in healthy young adults to predict dynamic changes that occur in plasma NEFA concentrations during either a glucose-only intravenous glucose tolerance test, or an insulin-modified intravenous tolerance test, or a modified protocol during which variable-rate glucose infusions were administered to prevent plasma glucose from declining below 100 mg/dl. The model described all of the major features of NEFA response to an intravenous glucose tolerance test, including an initial latency phase, a phase during which plasma NEFA concentrations plummet to a nadir, and a rebound phase during which plasma NEFA concentrations may rise to a plateau concentration, which may be substantially higher than the initial basal NEFA concentration. This model is consistent with physiological processes and provides seven adjustable parameters that can be used to quantify NEFA production (lipolysis) and utilization (oxidation). When tested on data from the scientific literature, the range in estimated rate of lipolysis was 24-36 micromol.l(-1).min(-1) and for NEFA oxidation rate was 25-54 micromol.l(-1).min(-1). All model parameters were well identified and had coefficients of variation < 15% of their estimated values. It is concluded that this model is suitable to describe NEFA kinetics in human subjects.  相似文献   

9.
Uncontrolled inflammation is an underlying etiology for multiple diseases and macrophages orchestrate inflammation largely through the production of oxidized fatty acids known as oxylipids. Previous studies showed that selenium (Se) status altered the expression of oxylipids and magnitude of inflammatory responses. Although selenoproteins are thought to mediate many of the biological effects of Se, the direct effect of selenoproteins on the production of oxylipids is unknown. Therefore, the role of decreased selenoprotein activity in modulating the production of biologically active oxylipids from macrophages was investigated. Thioglycollate-elicited peritoneal macrophages were collected from wild-type and myeloid-cell-specific selenoprotein knockout mice to analyze oxylipid production by liquid chromatography/mass spectrometry as well as oxylipid biosynthetic enzyme and inflammatory marker gene expression by quantitative real-time polymerase chain reaction. Decreased selenoprotein activity resulted in the accumulation of reactive oxygen species, enhanced cyclooxygenase and lipoxygenase expression and decreased oxylipids with known anti-inflammatory properties such as arachidonic acid-derived lipoxin A4 (LXA4) and linoleic acid-derived 9-​oxo-octadecadienoic acid (9-oxoODE). Treating RAW 264.7 macrophages with LXA4 or 9-oxoODE diminished oxidant-induced macrophage inflammatory response as indicated by decreased production of TNFα. The results show for the first time that selenoproteins are important for the balanced biosynthesis of pro- and anti-inflammatory oxylipids during inflammation. A better understanding of the Se-dependent control mechanisms governing oxylipid biosynthesis may uncover nutritional intervention strategies to counteract the harmful effects of uncontrolled inflammation due to oxylipids.  相似文献   

10.
Experimental efforts to characterize the human microbiota often use bacterial strains that were chosen for historical rather than biological reasons. Here, we report an analysis of 380 whole-genome shotgun samples from 100 subjects from the NIH Human Microbiome Project. By mapping their reads to 1,751 reference genome sequences and analyzing the resulting relative strain abundance in each sample we present metrics and visualizations that can help identify strains of interest for experimentalists. We also show that approximately 14 strains of 10 species account for 80% of the mapped reads from a typical stool sample, indicating that the function of a community may not be irreducibly complex. Some of these strains account for >20% of the sequence reads in a subset of samples but are absent in others, a dichotomy that could underlie biological differences among subjects. These data should serve as an important strain selection resource for the community of researchers who take experimental approaches to studying the human microbiota.  相似文献   

11.
A direct radioimmunoassay for the rapid and accurate detection of human ANP from unextracted plasma is described. The sensitivity was approximately 50 pg/ml, respectively 2.5 pg/tube, the intra-assay variation 4%, and the inter-assay variation less than 12%. Rat ANP (1-28, 5-25, 5-27 and 5-28), oxydized and reduced hANP as well as plasma samples from various patients run in parallel to the 1-28 hANP standard curve. These findings imply, that the antibody primarily recognizes the mid-region (amino acids 6-25) of the intact ANP, that the C-terminal portion further increases the immunoreactivity, and that circulating plasma hANP is reliably measured. Plasma hANP ranged from 50-166 pg/ml (mean +/- SD: 98.3 +/- 44.6) in healthy individuals, there was no significant difference between samples were drawn in upright or lying position, the apparent half-life of injected hANP was 5.65 minutes. Patients with liver cirrhosis revealed significantly higher hANP levels of 244.5 +/- 173.5 pg/ml. Patients with various forms of cardiac disease had hANP concentrations ranging from 50 to 1744 pg/ml, depending at least partially on the right atrial pressure. No difference was observed if the samples were drawn from either right or left intracardial locations. Our findings with this system demonstrate that hANP is reliably measured even without prior extraction.  相似文献   

12.
Adenohypophysectomy (hypox) was carried out in adult chickens in an attempt to assess what role, if any, the anterior pituitary gland plays in maintaining basal levels of plasma insulin (IRI) and avian pancreatic polypeptide (APP) both before and immediately after a fast-refeed regimen. Each bird was tube-fed 61 gms twice daily, body weights were taken daily, and blood samples drawn daily just before the second feeding. All birds were fasted for 24 hr on days 4-5, another blood sample taken, and then refed the usual gruel. Blood samples were taken at 5,15,30,90 and 180 min after refeeding. Hypox caused an immediate and sustained decrease in plasma IRI and a significant but transient increase in plasma APP which lasted 3-4 days before returning to normal; plasma glucose was marginally decreased. Refeeding resulted in a trend of less response (increase) in all three parameters studied in the hypox group. It is suggested that in chickens, hypox may lead to a release phenomenon from a normal inhibitory role which the anterior pituitary gland plays on APP release.  相似文献   

13.
We have previously shown that PBT-3, a stable synthetic analog of hepoxilins, inhibits the aggregation of human platelets in vitro evoked by collagen through inhibition of thromboxane A(2) formation and action on the TP receptor. We now show that PBT-3 is capable of potently inhibiting the second phase of aggregation evoked by ADP in both washed human platelets and platelet-rich plasma (PRP), a phase associated with thromboxane formation. Aspirin blocks this second phase as well; so does the thromboxane receptor antagonist SQ 29,548. When ADP-evoked aggregation in PRP is activated by heparin through an enhancement of thromboxane formation, PBT-3, aspirin as well as SQ 29,548 block this activation through different mechanisms. These data confirm the inhibitory action of PBT-3 on aggregation of human platelets through inhibition of both thromboxane formation and blockade of thromboxane receptor action and suggest that this family of compounds may be useful in the treatment of thrombotic disorders in combination with heparin.  相似文献   

14.
In order to evaluate the critical components of the process necessary to preserve clinical plasma samples collected at research sites for proteomic analysis, various collection and preservation protocols with controlled experimentation were evaluated. The presence of a protease inhibitor cocktail (PIC) included in the blood draw tube would stabilize the plasma proteins was hypothesized. To test this hypothesis, four plasma samples from each of 14 volunteers were collected. Samples were treated following a standard protocol that included PIC or were subjected to various processing treatments that included time, temperature, different anticoagulants, and the absence of PIC. Large format two dimensional-polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis and enzyme immunoassay (EIA) were used to detect differences between the treatment groups. A novel 2D-PAGE quality scoring method was developed to determine global differences in the treatment groups, wherein a rating scale questionnaire was used to quantify the quality of each 2D-PAGE gel. The data generated from EIAs, classical 2D-PAGE image analysis and 2D-PAGE quality scoring, each generated similar results. Inclusion of protease inhibitor cocktail in the sample tubes, provided stable and reliable human plasma samples that yielded reproducible results by proteomic analysis. When PIC was included, samples retained stability under less stringent processing, such that refrigeration for several hours before processing or one freeze-thaw cycle had little detrimental effect. We demonstrated that samples without PIC, from either heparin or ethylenediaminetetraacetic acid (EDTA) plasma tubes, gave results that varied significantly from the control samples. Also, even with PIC present in blood tubes, we found it was important to quickly decant the separated plasma from the cellular components found in the blood tubes following centrifugation, as prolonged exposure again yielded different results from the standard procedure.  相似文献   

15.
Roux-en-Y gastric bypass surgery (RYGBP) leads to improvements in satiety and obesity-related comorbidities. The mechanism(s) underlying these improvements are not known but may be revealed in part by discovery proteomics. Therefore, fasting plasma was collected from 12 subjects (mean BMI >45) during RYGBP and during a second procedure approximately 17 months later. Body weight, obesity-related comorbidities, and medication use were decreased after RYGBP. Mass spectrometry-based proteomic analysis was performed on a subset of seven samples using isobaric isotope-coded affinity tags (four plex iTRAQ). Initial proteomic analysis (n = 7) quantified and identified hundreds of plasma proteins. Manual inspection of the data revealed a 2.6 +/- 0.5-fold increase in apolipoprotein A-IV (apo A-IV, gene designation: APOA4), a approximately 46-kDa glycoprotein synthesized mainly in the bypassed small bowel and liver after RYGBP. The change in apo A-IV was significantly greater than other apolipoproteins. Immunoblot analysis of the full longitudinal sample set (n = 12) indicated even higher increases (8.3 +/- 0.2 fold) in apo A-IV. Thus iTRAQ may underestimate the changes in protein concentrations compared to western blotting of apo A-IV. Apo A-IV inhibits gastric emptying and serves as a satiety factor whose synthesis and secretion are increased by the ingestion of dietary fat. It also possesses anti-inflammatory and antiatherogenic properties. Based on these functions, we speculate changes in apo A-IV may contribute to weight loss as well as the improvements in inflammation and cardiovascular disease after RYGBP. In addition, the findings provide evidence validating the use of iTRAQ proteomics in discovery-based studies of post-RYGBP improvements in obesity-related medical comorbidities.  相似文献   

16.
The human Plasma Proteome Project pilot phase aims to analyze serum and plasma specimens to elucidate specimen characteristics by various proteomic techniques to ensure sufficient sample quality for the HUPO main phase. We used our proprietary peptidomics technologies to analyze the samples distributed by HUPO. Peptidomics summarizes technologies for visualization, quantitation, and identification of the low-molecular-weight proteome (<15 kDa), the "peptidome." We analyzed all four HUPO specimens (EDTA plasma, citrate plasma, heparin plasma, and serum) from African- and Asian-American donors and compared them to in-house collected Caucasian specimens. One main finding focuses on the most suitable method of plasma specimen collection. Gentle platelet removal from plasma samples is beneficial for improved specificity. Platelet contamination or activation of platelets by low temperature prior to their removal leads to distinct and multiple peptide signals in plasma samples. Two different specimen collection protocols for platelet-poor plasma are recommended. Further emphasis is placed on the differences between plasma and serum on a peptidomic level. A large number of peptides, many of them in rather high abundance, are only present in serum and not detectable in plasma. This ex vivo generation of multiple peptides hampers discovery efforts and is caused by a variety of factors: the release of platelet-derived peptides, other peptides derived from cellular components or the clot, enzymatic activities of coagulation cascades, and other proteases. We conclude that specimen collection is a crucial step for successful peptide biomarker discovery in human blood samples. For analysis of the low-molecular-weight proteome, we recommend the use of platelet-depleted EDTA or citrate plasma.  相似文献   

17.
Low density lipoprotein (LDL) receptor activity has been detected and identified in human liver samples by ligand blotting with biotinylated lipoproteins and by immunoblotting with a monoclonal antibody raised against the bovine adrenal LDL receptor. The molecular weight of the human liver LDL receptor, approximately 132,000 on nonreduced polyacrylamide gels, is identical to that of LDL receptors detected in normal human skin fibroblasts by the same methods. LDL receptor-dependent binding activity in human liver samples has been semi-quantitated by integrating the areas under the peaks after scanning photographs of ligand blots, and receptor protein determined by radioimmunoassay with purified bovine adrenal LDL receptor protein as the standard. There was a highly significant correlation between the values obtained by each method for seven different liver samples (r = 0.948). The LDL receptor protein content of liver membranes from 10 subjects as determined by radioimmunoassay was inversely related to the plasma LDL cholesterol concentration (r = 0.663, p = 0.05) but not to other plasma lipid values, including total plasma cholesterol, high density lipoprotein cholesterol, or plasma triglyceride concentrations.  相似文献   

18.
The advantage of using proteins and peptides as biomarkers is that they can be found readily in blood, urine, and other biological fluids. Such sample types are easily obtained and represent a potentially rich palette of biologically informative molecules. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) represents a key tool for rapidly interrogating such sample types. The goal of clinical proteomics is to harness the power of this tool for identifying novel, condition-specific protein fingerprints that may, in turn, lead to the elucidation and use of diseasespecific biomarkers that may be used to diagnose disease as well as to evaluate disease severity, disease progression, and intervention efficacy. Here we have evaluated a simple, affordable bench-top MALDI-TOF mass spectrometer to generate protein profiles from human plasma samples of asthma patients and healthy individuals. We achieve this profiling by using C8-functionalized magnetic beads that enrich a specific subset of plasma proteins based on their absorption by this resin. This step is followed by elution, transfer onto a prestructured sample support (AnchorChip technology), and analysis in a bench-top MALDI-TOF mass spectrometer (OmniFLEX) with AutoXecute acquisition control which enables automated operation with reproducible results. Resulting spectra are compiled and analyzed through the pattern recognition component of ClinProTools software. This approach in combination with ClinProTools software permits the investigator to rapidly scan for potential biomarker peptides/proteins in human plasma. The reproducibility of plasma profiles within and between days has been evaluated. The results show that the novel and facile approach with manual magnetic-bead sample preparation and a low-cost bench-top MALDI-TOF mass spectrometer is suitable for preliminary biomarker discovery studies.  相似文献   

19.
The aim of the present study was to examine whether IL-6 and TNF-alpha are expressed in, and released from, human skeletal muscle during exercise. We hypothesized that the skeletal muscle will release IL-6, but not TNF-alpha, during exercise because of previous observations that TNF-alpha negatively affects glucose uptake in skeletal muscle. Six healthy, male subjects performed 180 min of two-legged knee-extensor exercise. Muscle samples were obtained from the vastus lateralis of one limb. In addition, blood samples were obtained from a femoral artery and vein. Plasma was analyzed for IL-6 and TNF-alpha. We detected both IL-6 and TNF-alpha mRNA in resting muscle samples, and whereas IL-6 increased (P < 0.05) approximately 100-fold throughout exercise, no significant increase in TNF-alpha mRNA was observed. Arterial plasma TNF-alpha did not increase during exercise. Furthermore, there was no net release of TNF-alpha either before or during exercise. In contrast, IL-6 increased throughout exercise in arterial plasma, and a net IL-6 release from the contracting limb was observed after 120 min of exercise (P < 0.05).  相似文献   

20.
Surface plasmon resonance (SPR) was used as an affinity biosensor to determine absolute heparin concentrations in human blood plasma samples. Protamine and polyethylene imine (PEI) were evaluated as heparin affinity surfaces. Heparin adsorption onto protamine in blood plasma was specific with a lowest detection limit of 0.2 U/ml and a linear window of 0.2–2 U/ml. Although heparin adsorption onto PEI in buffer solution had indicated superior sensitivity to that on protamine, in blood plasma it was not specific for heparin and adsorbed plasma species to a steady-state equilibrium. By reducing the incubation time and diluting the plasma samples with buffer to 50%, the non-specific adsorption of plasma could be controlled and a PEI pre-treated with blood plasma could be used successfully for heparin determination. Heparin adsorption in 50% plasma was linear between 0.05 and 1 U/ml so that heparin plasma levels of 0.1–2 U/ml could be determined within a relative error of 11% and an accuracy of 0.05 U/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号