首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by approximately 30% compared with control hepatocytes (P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma (P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma (P < 0.01) and fetal liver (P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I (P < 0.01) and more 29- to 32-kDa IGFBPs (P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3-4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 +/- 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 +/- 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.  相似文献   

2.
3.
Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.  相似文献   

4.
Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and corticosteroid-binding globulin (CBG) protein levels and insulin resistance in postnatal life. The aim was to determine whether these changes persisted to adulthood and whether alterations in mediators of hepatic glucocorticoid and glucose regulation contributed to changes in metabolism. Pregnant ewes or their fetuses received either repeated intramuscular saline (MS, FS) or betamethasone injections (0.5 mg/kg; M4, F4) at 104, 111, 118, and 124 days of gestation (dG), or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG (M1, F1). Offspring were catheterized at 2 and 3 yr of age and given an intravenous glucose challenge (0.5 mg/kg). Hepatic tissue was collected at 3.5 yr. At 2 yr of age, basal plasma insulin was elevated in M4 offspring and at 3 yr of age was elevated in F4 offspring. Basal insulin-to-glucose ratio was significantly elevated in M4 offspring at 2 yr of age and elevated in M1, M4, and F4 offspring at 3 yr of age. All betamethasone treatments resulted in significant increases in hepatic glucose-6-phosphatase (G-6-Pase) activity. Hepatic glucocorticoid receptor protein levels were not altered in M1 and M4 offspring but were increased in F1 and F4 offspring. Hepatic CBG protein levels were lower in F4 but not F1 offspring and were unchanged from control in M1 and M4 offspring. Prenatal betamethasone exposure results in elevated hepatic G-6-Pase activity in adulthood and may contribute to long-term changes in metabolism.  相似文献   

5.
Maternal ethanol intake during pregnancy impairs fetal growth, but mechanisms are not clearly defined. Reduced IGF abundance or bioavailability in the fetus and/or mother may contribute to this growth restriction. We hypothesized that an episode of acute ethanol exposure, mimicking binge drinking would restrict fetal growth and perturb the maternal and fetal IGF axes. Pregnant sheep were infused intravenously with saline or ethanol (1 g/kg maternal wt) over 1 h, on days 116, 117, and 118 of gestation (start of 1st infusion = time 0, term is 147 days). Maternal and fetal plasma IGF and IGF-binding protein (IGFBP) concentrations were measured before and after each infusion. Compared with controls, ethanol exposure reduced fetal weight at day 120 by 19%, transiently reduced maternal plasma IGF-I (-35%) at 30 h, and decreased fetal plasma IGF-II (-28%) from 24 to 54 h after the first infusion. Ethanol exposure did not alter maternal or fetal plasma concentrations of IGFBP-2 and IGFBP-3, measured by Western ligand blotting. We conclude that suppression of maternal and fetal IGF abundance may contribute to fetal growth restriction induced by acute or binge ethanol exposure.  相似文献   

6.
Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction.Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.  相似文献   

7.
Kajantie E 《Hormone research》2003,60(Z3):124-130
Small preterm infants experience a unique postnatal period characterized by slow growth, inadequate nutrition and growth inhibiting treatments. Many have already been growth-restricted in utero. Studying this period is important when developing growth optimizing strategies for these infants and, in a broader context, as a model of extreme conditions that restrict growth. By following short-term growth of 48 very-low-birth-weight (VLBW; birth weight <1,500 g) infants for 9 postnatal weeks, we found that circulating insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 levels are low and reflect rigorously measured (knemometry and weight) concurrent growth velocity. Moreover, weight growth velocity is correlated with the ratio of lesser to highly phosphorylated IGFBP-1 but not with absolute IGFBP-1 concentrations. Thus, IGF-I, IGFBP-3 and the phosphorylation status of IGFBP-1 in circulation are likely to be involved in growth regulation during the postnatal period in VLBW infants.  相似文献   

8.
The insulin-like growth factors (IGF-I and -II) are potential mediators of the effects of maternal undernutrition on fetal growth and muscle development. The effects of a 40% reduction in maternal feed intake on serum levels of the IGFs, the thyroid hormones and cortisol, were investigated for the last two trimesters (day 25 to birth). This level of undernutrition is known to cause a 35% reduction in fetal and placental weights, and a 20-25% reduction in muscle fibre number. Maternal IGF-I level was greater than non-pregnant levels on day 25 gestation, in both control and restricted dams, and declined with gestational age. The increase in IGF-I level in the 40% restricted group was approximately two-thirds that of control animals. Fetal serum IGF-I was also reduced in undernourished fetuses throughout gestation. Maternal IGF-II did not change with gestational age and was unaffected by undernutrition. Fetal IGF-II reached a peak at day 55 of gestation, this peak was greatly diminished by maternal feed restriction. Both IGF-I and IGF-II tended to be related to fetal, placental and muscle weights at day 65 of gestation. Thyroid hormone concentration declined in maternal serum and increased in fetal serum with increasing gestational age. Levels were not significantly affected by undernutrition. Both triiodothyronine (T3) and thyroxine (T4) were correlated with IGF-I in maternal serum (P < 0.05), but not in fetal serum. Cortisol levels were elevated by undernutrition in both maternal and fetal serum, and increased with gestational age. Cortisol was inversely correlated with serum IGF-I in both maternal and fetal serum. Maternal serum IGF-I may mediate the effects of undernutrition on fetal growth by affecting the growth and establishment of the feto-placental unit in mid-gestation. Fetal IGF-I may mediate the effects on muscle growth, whereas IGF-II seems to be related to hepatic glycogen deposition. Cortisol may play a role via its effect on the IGFs, but the thyroid hormones are unlikely to be important until the late gestation/early postnatal period.  相似文献   

9.
10.
Insulin-like growth factor II binding and action in human fetal fibroblasts   总被引:5,自引:0,他引:5  
To investigate the role of insulin-like growth factor II (IGF-II) in human prenatal growth, IGF-II binding and biological action were studied in four lines of fetal and three lines of postnatal human fibroblasts. Specific binding of IGF-II was similar in both groups: 15.7% and 14.9% for fetal and postnatal fibroblasts, respectively. This was 5-10 times the amount of IGF-I binding found in these cells. IGF-I and IGF-II caused dose-dependent increases in [14C]aminoisobutyric acid (AIB) uptake. IGF-II was sevenfold less potent than IGF-I in stimulating this metabolic response in both fetal and postnatal fibroblasts. The maximal effect of IGF-II in stimulating [14C]AIB uptake approach that of IGF-I. Similar results were obtained when IGF-I and IGF-II stimulation of [3H]thymidine incorporation was compared in fetal and postnatal fibroblasts. Incubation in the presence of alpha IR-3, a monoclonal antibody to the type I IGF receptor, inhibited the ability of both IGF-I and IGF-II to stimulate [14C]AIB uptake and [3H]thymidine incorporation in fetal and postnatal cells. A monoclonal antibody to the insulin receptor did not affect IGF action. These data indicate that IGF-II is a potent metabolic and mitogenic stimulus for human fetal fibroblasts. However, despite the presence of abundant type II IGF receptors on both fetal and postnatal human fibroblasts, IGF-II stimulation of amino acid transport and DNA synthesis appears to be mediated through the type I rather than through its own type II IGF receptor.  相似文献   

11.
Insulin-like growth factor-II (IGF-II) is the most abundant growth factor stored in human bone. Upon release from this storage depot, IGF-II could act in bone repair and in the coupling of bone formation to bone resorption, a process inherent to bone which is a key regulatory process for maintenance of bone tissue. In this study, we report the isolation and characterization of a novel IGF binding protein (IGFBP) from human bone and describe how this IGFBP may be involved in the fixation of IGF-II in human bone. This new IGFBP has an apparent molecular weight of 29 kDa and has several fold higher affinity for IGF-II than IGF-I which could explain the much greater abundance of IGF-II than IGF-I in human bone. In terms of biological activity, this IGFBP was found to potentiate the proliferative actions of IGF-II on bone cells. This work raises the possibility that this IGFBP may participate in mediating some of the actions of IGF-II.  相似文献   

12.
OBJECTIVE: An increasing body of evidence supports a major role for the insulin-like growth factors (IGFs) in the control of human fetal growth. Individual data at various times of pregnancy suggest that IGF-I and IGF-II levels remain stable up to the 33rd week of pregnancy. Thereafter, both increase to reach values 2-3 times higher at term. In order to provide an accurate reflection of fetal IGFs in utero, we sampled fetal blood from the umbilical cord by cordocentesis. METHODS: We measured IGF-I and IGF-II in 12 fetuses longitudinally for up to 5 times between the 21st week of gestation and delivery. RESULTS: All patients showed a progressive increase in IGF-I and IGF-II levels. Data determined during different time intervals (before 29th, 29th to 32nd, after 32nd week) were compared and the main increase was found after the 32nd week. The median for IGF-I before the 29th week was 33.5 ng/ml (range 19-40.5) and increased to 41 ng/ml (32-59) between the 29th to 32nd and further to 54.1 ng/ml (range 17-70) thereafter. During the same time interval, the median for IGF-II increased from 217 ng/ml (86-326) to 349 ng/ml (227-467). In 7 patients, cord blood after delivery was available. For IGF-II a further increase was consistently found after birth (from 282 ng/ml (175-511) to 393 ng/ml (297-513)), whereas only 2 fetuses showed an increase in IGF-I. CONCLUSION: We conclude that in human fetuses, IGF-I and IGF-II levels increase longitudinally throughout pregnancy. Therefore, they may become important markers of healthy fetal development.  相似文献   

13.
Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis.  相似文献   

14.
Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.  相似文献   

15.
16.
The insulin-like growth factor (IGF) system plays an important role in the autocrine and paracrine regulation of bone formation and remodeling. The aim of this study was to evaluate the role of the autocrine IGF system during osteogenic differentiation in rat tibial osteoblasts (ROB) in culture. In this in vitro model, the stages of osteogenesis studied were S1, corresponding to the onset of alkaline phosphatase (AP) expression (days 0-3); S2, coincident with the peak of AP expression in differentiation culture conditions (days 4-6), and S3, corresponding to the onset of mineral deposition in the extracellular matrix (days 7-9). The results showed that conditioned medium of ROB contains greater amounts of IGF-II than IGF-I at all differentiation stages. Both peptides showed the highest concentrations on day 3 of differentiation (end of S1). All IGF-binding proteins (IGFBPs), except IGFBP-1 and -6, were detected, and IGFBP-2 was the most abundant IGFBP present in the conditioned media, and its degradation increased from S1 to S3. By semiquantitative RT-PCR, IGF-I and IGF-II were highly expressed on days 3 and 6, whereas IGFBP-2 was constantly expressed. We focused our study on the role of IGF-II and IGFBP-2 on the synthesis of AP, an early marker of osteoblast maturation. The results showed that a significant increase in AP expression was induced by IGF-II added to the differentiating osteoblasts continuously or in S1 but not in S2 or S3. IGFBP-2 was able to potentiate endogenous and exogenous IGF-II-dependent stimulation of AP activity, and its proteolytic degradation in late stages of osteogenesis (S2 and S3) was highly correlated with the increase of active matrix metalloproteinase-2 in the CM and with the decreased efficacy of IGF-II action. These data suggest that IGFBP-2, at nearly equimolar concentration with IGF-II, plays a potentiating role in IGF-II action on ROB differentiation in vitro.  相似文献   

17.
18.
Insulin-like growth factor (IGF)-I and IGF-II play a number of important roles in growth and differentiation, and IGF-binding proteins (IGFBPs) modulate IGF biological activity. IGF-I has been shown previously to be essential for normal uterine development. Therefore, we used in situ hybridization assays to characterize the unique tissue- and developmental stage-specific pattern of expression for each IGF and IGFBP gene in the rat uterus during perinatal development (gestational day [GD]-20 to postnatal day [PND]-24). IGF-I and IGFBP-1 mRNAs were expressed in all uterine tissues throughout this period. IGFBP-3 mRNA was not detectable at GD-20 but became detectable beginning at PND-5, and the signal intensity appeared to increase during stromal and muscle development. IGFBP-4 mRNA was abundant throughout perinatal development in the myometrium and in the stroma, particularly near the luminal epithelium. IGFBP-5 mRNA was abundantly expressed in myometrium throughout perinatal development. IGFBP-6 mRNA was detected throughout perinatal development in both the stroma and myometrium in a diffuse expression pattern. IGF-II and IGFBP-2 mRNAs were not detected in perinatal uteri. Our results suggest that coordinated temporal and spatial expression of IGF-I and its binding proteins (IGFBP-1,-3,-4,-5, and -6) could play important roles in perinatal rodent uterine development.  相似文献   

19.
We have previously reported (Bauer MK, Breier BH, Bloomfield FH, Jensen EC, Gluckman PD, and Harding JE. J Endocrinol 177: 83-92, 2003) that a chronic pulsatile infusion of growth hormone (GH) to intrauterine growth-restricted (IUGR) ovine fetuses increased fetal circulating IGF-I levels without increasing fetal growth. We hypothesized a cortisol-induced upregulation of fetal hepatic GH receptor (GH-R) mRNA levels, secondary increases in IGF-I mRNA levels, and circulating IGF-I levels, but a downregulation of the type I IGF receptor (IGF-IR) as an explanation. We, therefore, measured mRNA levels of genes of the somatotrophic axis by real-time RT-PCR in fetal and placental tissues of fetuses with IUGR (induced by uteroplacental embolization from 110- to 116-days gestation) that received either a pulsatile infusion of GH (total dose 3.5 mg/day) or vehicle from 117-126 days and in control fetuses (n = 5 per group). Tissues were collected at 127 days (term, 145 days). Fetal cortisol concentrations were significantly increased in IUGR fetuses. However, in liver, GH-R, but not IGF-I or IGF-IR, mRNA levels were decreased in both IUGR groups. In contrast, in placenta, GH-R, IGF-I, and IGF-IR expression were increased in IUGR vehicle-infused fetuses. GH infusion further increased placental GH-R and IGF-IR, but abolished the increase in IGF-I mRNA levels. GH infusion reduced IGF-I expression in muscle and increased GH-R but decreased IGF-IR expression in kidney. IUGR increased hepatic IGF-binding protein (IGFBP)-1 and placental IGFBP-2 and -3 mRNA levels with no further effect of GH infusion. In conclusion, the modest increases in circulating cortisol concentrations in IUGR fetuses did not increase hepatic GH-R mRNA expression and, therefore, do not explain the increased circulating IGF-I levels that we found with GH infusion, which are likely due to reduced clearance rather than increased production. We demonstrate tissue-specific regulation of the somatotrophic axis in IUGR fetuses and a discontinuity between GH-R and IGF-I gene expression in GH-infused fetuses that is not explained by alterations in phosphorylated STAT5b.  相似文献   

20.
During the last decade, involvement of growth hormone (GH), insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied. This review provides an update on the GH, IGF system and their role in ovarian follicular development. In vitro studies and knockout experiments demonstrated an important role of GH in preantral follicle growth and differentiation through their binding with GH receptors, which are located both in the oocyte and follicular somatic tissues. Furthermore, GH stimulates the development of small antral follicles to gonadotrophin-dependent stages, as well as maturation of oocytes. With regard to the IGF system, IGF-I has no effects on primordial follicle development, but both IGF-I and IGF-II stimulate growth of secondary follicles. Depending on the species studies and method used, these proteins have been detected in oocytes and/or somatic cells. In antral follicles, these IGFs stimulate granulosa cell proliferation and steroidogenesis in most mammals. The bioavailability of IGFs is regulated by a family of intrafollicular expressed IGF binding proteins (IGFBPs). Facilitation of IGF can be increased through the activity of specific IGFBP proteases, which degrade the IGF/IGFBP complex, resulting in the production of IGFBP fragments and release of attached IGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号