首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-carboxylic acid containing bioisosteres of (5-arylidene-2,4-dioxothiazolidin-3-yl)acetic acids, which are active as aldose reductase (ALR2) inhibitors, were designed by replacing the carboxylic group with the trifluoromethyl ketone moiety. The in vitro evaluation of the ALR2 inhibitory effects of these trifluoromethyl substituted derivatives led to the identification of two inhibitors effective at low micromolar doses. It was further confirmed that a carboxylic chain on N-3 of the thiazolidinedione scaffold is a determining requisite to obtain the highest efficacy levels; however, it is not essential for the interaction with the target enzyme and it can be replaced by different polar groups, thus obtaining less ionised or unionised inhibitors.  相似文献   

2.
Several (Z)-5-arylidene-2,4-thiazolidinediones were synthesized and tested as aldose reductase inhibitors (ARIs). The most active of the N-unsubstituted derivatives (2) exerted the same inhibitory activity of Sorbinil. The introduction of an acetic side chain on N-3 of the thiazolidinedione moiety led to a marked increase in lending inhibitory activity, conducting to the discovery of a very potent ARI (4c), whose activity level (IC50=0.13 microM) was in the same range of Tolrestat. Moreover, the corresponding methyl esters (3), devoid of any acidic functionality, showed appreciable inhibitory activity similar to that of the N-unsubstituted compounds. It was also found that the substitution pattern on the 5-benzylidene moiety markedly influenced the activity of N-unsubstituted 2,4-thiazolidinediones 2, compounds with substituents at the meta position being generally more effective than the para-substituted ones; however, this SAR was not evidenced in acetates 3 and acids 4.  相似文献   

3.
Several 5-benzyl-2,4-thiazolidinediones (5-7) were synthesised and tested as in vitro aldose reductase (ALR2) inhibitors. Most of them, particularly N-unsubstituted 5-benzyl-2,4-thiazolidinediones 5 and (5-benzyl-2,4-dioxothiazolidin-3-yl)acetic acids 7, displayed moderate to high inhibitory activity levels. In detail, the insertion of an acetic chain on N-3 significantly enhanced ALR2 inhibitory potency, leading to acids 7 which proved to be the most effective among the tested compounds. In addition, in N-unsubstituted derivatives 5 the presence of an additional aromatic ring on the 5-benzyl moiety was generally beneficial. In fact, the ALR2 inhibition results of compounds 5-7, compared to those of the previously assayed corresponding 5-arylidene-2,4-thiazolidinediones, indicated that N-unsubstituted derivatives 5b, c and d, which bore an additional aromatic group in the para position of the 5-benzyl residue, were significantly more effective than their 5-arylidene counterparts; in all other cases, the saturation of the exocyclic double bond CC in 5 brought about a moderate decrease in activity.  相似文献   

4.
Aldose reductase (AR) is implicated to play a critical role in diabetes and cardiovascular complications because of the reaction it catalyzes. AR enzyme appears to be the key factor in the reduction of glucose to sorbitol. Synthesis and accumulation of sorbitol in cells due to AR activity is the main cause of diabetic complications, such as diabetic cataract, retinopathy, neuropathy and nephropathy. Aldose reductase inhibitors have been found to prevent sorbitol accumulation in tissues. Numerous compounds have been prepared in order to improve the pharmacological prophile of inhibition of aldose reductase enzyme. In this study, seventeen flavonyl-2,4-thiazolidinediones (flavonyl-2,4-TZD) (Ia-e, IIa-e and IIIa-g) were tested for their ability to inhibit rat kidney AR. Compound Ib showed the highest inhibitory activity (88.69 +/- 1.46%) whereas Ia, IIa, IIIa, IIIb also showed significant inhibitory activity (49.26 +/- 2.85, 67.29 +/- 1.09, 71.11 +/- 1.95, 64.86 +/- 1.21%, respectively).  相似文献   

5.
A series of thiazolidinedione based amide derivatives were designed, synthesized and docked against the PPARγ receptor target. 11 compounds from the series with good glide scores were selected for in vivo antidiabetic study based on streptozotocin induced diabetic rat model. It was observed that 4 compounds (6c, 6e, 6m & 6n) showed significantly good antidiabetic activity in comparison to rosiglitazone and pioglitazone as reference drugs. Compound 6c appeared as the most potent derivative in lowering blood glucose level and showed excellent interaction with SER 342, ILE 281, pi-pi interaction with ARG 288 and halogen bond interaction with LYS 367. Further, PPARγ transactivation and gene expression studies of compound 6c were carried out to investigate the possible mechanism of action through PPARγ modulation. Compound 6c exhibited 53.65% transactivation and elevated PPARγ gene expression by 2.1 folds. The biochemical parameters (AST, ALT and ALP levels) were found within the range with no noteworthy damage to liver.  相似文献   

6.
A novel series of 14 N-nitromethylsulfonanilide derivatives were synthesized and evaluated for their ability to inhibit recombinant aldose reductase. Computational docking simulations provided a good explanation for the observed structure-activity relationships. Kinetic analysis of (2-fluoro-5-methyl-N-methyl)-N-nitromethylsulfonanilide, 11, one of the most potent compounds in this series with an IC50 = 0.35 M, showed uncompetitive inhibition. Subsequent in vitro culture studies of rat lenses with 11 indicated that this series of aldose reductase inhibitors are effective in either preventing or retarding sugar cataract formation associated with diabetes.  相似文献   

7.
The current study deals with the synthesis of urea and thiourea derivatives 137 which were characterized by various spectroscopic techniques including FAB-MS, 1H-, and 13C NMR. The synthetic compounds were subjected to urease inhibitory activity and compounds exhibited good to moderate urease inhibitory activity having IC50 values in range of 10.11–69.80 µM. Compound 1 (IC50 = 10.11 ± 0.11 µM) was found to be most active and even better as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). A limited structure–activity relationship (SAR) was established and the compounds were also subjected to docking studies to confirm the binding interactions of ligands (compounds) with the active site of enzyme.  相似文献   

8.
In this study, we report the synthesis and antiviral activity of trans-ferulic acid derivatives containing acylhydrazone moiety. Biological tests demonstrated that most target compounds showed potent antiviral activity against tobacco mosaic virus (TMV). Compound D4 showed remarkable inactivating activity with EC50 value of 36.59 μg/mL, which was obviously superior to ribavirin (126.05 μg/mL). Molecular docking results revealed that compound D4 exhibited the optimal combining capacity with five hydrogen bonds to different amino-acid residues of TMV coat protein (TMV-CP). Docking results were consistent with the inactivating activity of target compounds against TMV.  相似文献   

9.
A number of 5-arylidene-2,4-thiazolidinediones containing a hydroxy or a carboxymethoxy group in their 5-benzylidene moiety have been synthesised and evaluated as in vitro aldose reductase (ALR2) inhibitors. Most of them exhibited strong inhibitory activity, with IC(50) values in the range between 0.20 and 0.70 microM. Molecular docking simulations into the ALR2 active site highlighted that the phenolic or carboxylic substituents of the 5-benzylidene moiety can favourably interact, in alternative poses, either with amino acid residues lining the lipophilic pocket of the enzyme, such as Leu300, or with the positively charged recognition region of the ALR2 active site.  相似文献   

10.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

11.
Seven novel ARIs (3ac, 4ac and 5) were synthesized with the implementation of an optimized and, partially, selective synthetic procedure, via a Friedel–Crafts acylation reaction. The synthesized ARIs have values of IC50ALR2 ranging from 0.19 μM (in case of compound 3b) to 2.3 μM (in case of compound 4a), while the values of selectivity index towards ALR1 range from 1 (in case of compound 3b) to 238 (in case of compound 3a). Finally, we found out that the presence of an additional (secondary) aromatic area is not a prerequisite feature for ARI activity.  相似文献   

12.
We have designed, synthesized and evaluated a series of hydroxylated 2-phenylbenzofuran derivatives as potential cholinesterase inhibitors. Starting from a series of 2-phenylbenzofurans previously published, in this paper we present a complete synthesis and the influence on the activity of one or two hydroxyl groups located in meta or in meta and para positions respectively of the 2-phenyl ring and highlight the importance of position of hydroxyl groups. Moreover, simultaneous introduction of halogen at position 7 of the benzofuran scaffold resulted in an improved inhibitory activity against the enzyme. To further provide molecular insight and to identify the most probable ligand-binding site of the protein, docking studies were performed for the top-ranked compounds. Docking results revealed conserved ligand-binding residues and supported the role of catalytic site residues in enzyme inhibition.  相似文献   

13.
《Phytomedicine》2015,22(1):49-51
We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM.  相似文献   

14.
We have synthesized oxadiazole derivatives (116), characterized by 1H NMR, 13C NMR and HREI-MS and screened for thymidine phosphorylase inhibitory potential. All derivatives display varied degree of thymidine phosphorylase inhibition in the range of 1.10 ± 0.05 to 49.60 ± 1.30 μM when compared with the standard inhibitor 7-Deazaxanthine having an IC50 value 38.68 ± 1.12 μM. Structure activity relationships (SAR) has been established for all compounds to explore the role of substitution and nature of functional group attached to the phenyl ring which applies imperious effect on thymidine phosphorylase activity. Molecular docking study was performed to understand the binding interaction of the most active derivatives with enzyme active site.  相似文献   

15.
Diabetes remains a life-threatening disease. The clinical profile of diabetic subjects is often worsened by the presence of several long-term complications, for example neuropathy, nephropathy, retinopathy, and cataract. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of 2,4-thiazolidinediones derivatives as aldose reductase (ALR2) inhibitors. Molecular ligand superimposition on a template structure was finished by the database alignment method. The 3D-QSAR models resulted from 44 molecules gave q 2 values of 0.773 and 0.817, r 2 values of 0.981 and 0.979 for CoMFA and CoMSIA, respectively. The contour maps from the models indicated that a large volume group next to the R-substituent will increase the ALR2 inhibitory activity. In fact, adding a -CH2COOH substituent at the R-position would generate a new compound with higher predicted activity.  相似文献   

16.
The biological activities of a series of mesoionic 1,3,4-thiadiazolium-2-aminide derivatives have been studied. The most active compounds (MI-HH; MI-3-OCH(3); MI-4-OCH(3) and MI-4-NO(2)) were evaluated to determine their effect on trypanothione reductase (TryR) activity in Leishmania sp. and Trypanosoma cruzi. Among the assayed compounds, only MI-4-NO(2) showed enzyme inhibition effect on extracts from different cultures of parasites, which was confirmed using the recombinant enzyme from T. cruzi (TcTryR) and Leishmania infantum (LiTryR). The enzyme kinetics determined with LiTryR demonstrated a non-competitive inhibition profile of MI-4-NO(2). A molecular docking study showed that the mesoionic compounds could effectively dock into the substrate binding site together with the substrate molecule. The mesoionic compounds were also effective ligands of the NADPH and FAD binding sites and the NADPH binding site was predicted as the best of all three binding sites. Based on the theoretical results, an explanation at the molecular level is proposed for the MI-4-NO(2) enzyme inhibition effect. Given TryR as a molecular target, it is important to continue the study of mesoionic compounds as part of a drug discovery campaign against Leishmaniasis or Chagas' disease.  相似文献   

17.
Aldose reductase inhibitors (ARIs) suppressing the hyperglycemia-induced polyol pathway have been provided as potential therapeutic candidates in the treatment and prevention of diabetic complications. Based upon structure-activity relationships of desmethylanhydroicaritin (1) and sophoflavescenol (2) as promising ARIs, 3,4'-dihydroxy flavonols with a prenyl or lavandulyl group at the C-8 position and a hydroxyl or methoxy group at the C-5 position are important for aldose reductase (AR) inhibition. In order to prove the above results, a combination of computational prediction and enzyme kinetics has begun to emerge as an effective screening technique for the potential. In the present study, we predicted the 3D structure of AR in rat and human using a docking algorithm to simulate binding between AR and prenylated flavonoids (1 and 2) and kaempferol (3) and scrutinized the reversible inhibition of AR by these ARIs. Docking simulation results of 1-3 demonstrated negative binding energies (Autodock 4.0=-9.11 to -7.64 kcal/mol; Fred 2.0=-79.54 to -51.84 kcal/mol) and an additional hydrogen bond through Phe122 and Trp219, in addition to the previously proposed interaction of AR and phenolics through Trp20, Tyr48, His110, and Trp111 residues, indicating that the presence of 8-prenyl and 5-methyl groups might potentiate tighter binding to the active site of the enzyme and more effective AR inhibitors. Moreover, types of AR inhibition were different depending on the presence or absence of the 8-prenyl group, in that 1 and 2 are mixed inhibitors with respective Ki values of 0.69 μM and 0.94 μM, while 3 showed noncompetitive inhibition with a Ki value of 4.65 μM. The present study suggests that an effective strategy for screening potential ARIs could be established by predicting 3D structural conformation of prenylated flavonoids and the orientation within the enzyme as well as by simultaneously determining the mode of enzyme inhibition.  相似文献   

18.
Bovine lens aldose reductase can be activated in crude extracts upon incubation at 37 degrees C at relatively high ionic strength. This phenomenon shows a seasonal occurrence, the enzyme being susceptible to activation only in lenses of animals sacrified in summer. Systems generating oxygen activated species induce the enzyme activation, whereas scavengers of "oxygen radicals" preserve the activated state of the enzyme. Glutathione and other thiol compounds appear to prevent the enzyme activation.  相似文献   

19.
20.
In order to create more potent anticancer agents, a series of five structurally different derivatives of Colchicine have been synthesised. These compounds were characterised spectroscopically and structurally and their antiproliferative activity against four human tumour cell lines (HL-60, HL-60/vinc, LoVo, LoVo/DX) was evaluated. Additionally the activity of the studied compounds was calculated using computational methods involving molecular docking of the Colchicine derivatives to β-tubulin. The experimental and computational results are in very good agreement indicating that the antimitotic activity of Colchicine derivatives can be readily predicted using computational modeling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号