首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we analyse a stochastic model for invertebrate predation taking account of the predator's satiation. This model approximates Holling's hungry mantid model when handling time is negligible (see Part I). For this model we derive equations from which we can calculate the functional response and the variance of the total catch. Moreover we study a number of approximations which can be used to calculate these quantities in practical cases in a relatively simple manner.List of Notation a rate constant of digestion - b maximum of rate constant of prey encounter in the mantid - c satiation threshold for search - c satiation threshold for pursuit in the mantid - c i (w1/2(N- N)i) - expectation operator - f rate of change of satiation during search - F functional response: mean number of prey eaten per unit of time - g rate constant of prey capture - h probability generating function of N conditional on S = s times p - H probability generating function of N - mi 1 - n, N number of prey caught - p probability density of S - pn simultaneous probability (density) of N and S - q probability of strike success - r dummy variable in generating function - s, S satiation - T s search time - T d digestion time - v asymptotic rate of increase of var v - V asymptotic rate of increase of var N - w weight of edible part of prey - W standard Wiener process - x prey density - z (N{S = s}-N)p - rate constant of prey escape time maximum pursuit time - (v{S = + w 1/2}-v) - present time as a fraction of the time from the start to the end of the experiment - hazard rate of T s - mean time between (downward) passages of S through c - v w–1/2(N-) - edible prey biomass density - probability density of , number pi - parameter of Weibull distribution of T s = (1/2acx(-g(c)))1/2 - w–1/2(S -) - satiation in the guzzler approximation: solution to d/dt = f() + g(), (0)=S(0). - biomass functional response: wF - total biomass catch in the guzzler approximation: solution to d/dt = g(), (0) = 0  相似文献   

2.
Photosynthesis-irradiance (P-E) curves are widely used to describe photosynthetic efficiency and potential. Contemporary models assume maximal photosynthetic quantum yield () at low irradiances. But P-E observations made with both oxygen evolution and carbon uptake techniques show that this is not always the case. Using new and published data in conjunction with modeling exercises, we demonstrate that regardless of the mechanism there can be reductions in at low irradiances that are not readily observable using conventional P-E analyses. We also show that analytical errors, such as inaccurate estimation of dark oxygen consumption or carbon uptake, can markedly affect the structure of -E curves with negligible effect on P-E curve structure. Whether from respiration `corrections' or other mechanisms, these deviations in at low light levels from the maximum quantum yield of photosynthesis (max) can lead to significant errors (> 50%) in the estimation of the linear portion of the P-E curve and ultimately max. Non-linear models of P-E, such as the rectangular hyperbola, quadratic, exponential and hyperbolic tangent that are commonly used to estimate the initial slope () of the P-E curve assume that is maximal at low light levels and therefore can err in the estimation of max when is reduced at low light levels. Using a diverse data set of 622 P-E curves with a total of 7623 points, we show that although model skills are high (r 2 = 0.96 ± 0.05, 0.97 ± 0.04, 0.97 ± 0.04 and 0.97 ± 0.04, respectively), a large fraction of the model-predicted max differ by greater than 10% from true max values (91%, 50%, 82% and 46%, respectively). Data from these observations and modeling exercises lead us to suggest that max be determined by directly estimating the true maximum of a -E curve rather than using the more conventional methodology employing the initial slope of the P-E curve.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Summary Simple pseudo-3D modifications to the constant-time HSQC and HCACO experiments are described that allow accurate (±0.5 Hz) measurement of one bond JCH coupling constants in proteins that are uniformly enriched with 13C. An empirical ,-surface is calculated which describes the deviation of 1JCH from its random coil value, using 203 1JCH values measured for residues in the proteins calmodulin, staphylococcal nuclease, and basic pancreatic trypsin inhibitor, for which and are know with good precision from previous X-ray crystallographic studies. Residues in -helical conformation exhibit positive deviations of 4–5 Hz, whereas deviations in -sheet are small and, on average, slightly negative. Data indicate that 1JCH depends primarily on , and that 1JCH may be useful as a qualitative probe for secondary structure. Comparison of 1JCH coupling constants measured in free calmodulin and in its complex with a 26-aminoacid peptide fragment of myosin light-chain kinase confirm that the calmodulin secondary structure is retained upon complexation but that disruption of the middle part of the central helix is even more extensive than in free calmodulin. Supplementary material available from the authors: One table listing 352 1JCH and 1J-values, together with ,-values for 203 residues of known conformation. Two figures showing (a) a Ramachandran plot of the ,-values of 203 residues used in deriving 1J(,), and (b) the r.m.s.d. 1J(,) distribution.  相似文献   

4.
The dynamics of coupled biological oscillators can be modeled by averaging the effects of coupling over each oscillatory cycle so that the coupling depends on the phase difference between the two oscillators and not on their specific states. Average phase difference theory claims that mode locking phenomena can be predicted by the average effects of the coupling influences. As a starting point for both empirical and theoretical investigations, Rand et al. (1988) have proposed d/dt= — K sin ), with phase-locked solutions =arcsin( /K), where is the difference between the uncoupled frequencies and K is the coupling strength. Phase-locking was evaluated in three experiments using an interlimb coordination paradigm in which a person oscillates hand-held pendulums. was controlled through length differences in the left and right pendulums. The coupled frequency c was varied by a metronome, and scaled to the eigenfrequency v of the coupled system K was assumed to vary inversely with c. The results indicate that: (1) and K contribute multiplicatively to (2) =0 or = regardless of K when =0; (3) 0 or regardless of when K is large (relative to ); (4) results (1) to (3) hold identically for both in phase and antiphase coordination. The results also indicate that the relevant frequency is c/v rather than c. Discussion high-lighted the significance of confirming =arcsin(/K) for more general treatments of phase-locking, such as circle map dynamics, and for the 11 phase-entrainment which characterizes biological movement systems.  相似文献   

5.
The relationship between CO2 assimilation and electron transport in leaves   总被引:8,自引:0,他引:8  
The inter-relationships between the quantum efficiencies of photosystems I (I) and II (II) and the quantum yield of CO2 fixation % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] were investigated in pea (Pisum sativum (L)) leaves with differing rates of photosynthesis using both photorespiratory and non-photorespiratory conditions, and in a leaf of Hedera helix (L) under photorespiratory conditions. The results indicate that under photorespiratory conditions the relationship between % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] and both I and II is non-linear and variable. The relationship between I and II under these circumstances remains predominantly linear. Under non-photorespiratory conditions, leaves with a low rate of photosynthesis due to sink limitation exhibit a non-linear relationship between I and II, though the relationship between I and II remains linear suggesting a close relationship between linear electron flow and CO2 fixation. Leaves irradiated at the CO2 compensation point also exhibit a non-linear relationship between I and II. These results suggest that for leaves in air linear electron flow is the predominant source of energy for metabolism. The role of cyclic electron transport is considered when the requirement for the products of linear electron transport is depressed.Abbreviations qp the coefficient for photochemical quenching of chlorophyll fluorescence - exe the quantum efficiency of excitation energy capture by open PS II traps - II the quantum efficiency for electron transport by PS II - I the quantum efficiency (for electron transport) by PS I - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] the quantum yield for CO2 fixation (obtained as the gross rate of CO2 fixation divided by the irradiance) - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabgs5aenaaBa% aaleaacqaH8oqBdaWgaaadbaGaamisamaaCaaabeqaaiabgUcaRaaa% aeqaaaWcbeaaaaa!3CB0!\[\Delta _{\mu _{H^ + } } \] trans-thylakoid proton potential difference - PAQF photosynthetically active quantum flux  相似文献   

6.
We investigated the influence of the combined use of sizofiran, a-1,3-glucan and a recombinant interferon- (rIFN-) upon biological activities of peritoneal macrophages (M). The number of peritoneal M and the production of cytokines (interleukin-1, interferon- and tumor necrosis factor) was increased by the combined treatment. Fully activated peritoneal M based on the increased number of elongated pseudopods were observed by electromicroscope. Sizofiran seems to assure a sufficient supply of M to kill tumor cells in the peritoneal cavity and co-administered rIFN- seems to directly stimulate the accumulated M in addition to its direct cytotoxicity against tumor cells. This combination therapy may be a step to the prevention of the recurrence of gynecological malignancies including ovarian cancer, after a negative second-look laparotomy.Abbreviations rIFN- recombinant interferon- - IL-1 interleukin-1 - TNF tumor necrosis factor - SLL second look laparotomy  相似文献   

7.
Two bacteriophages (Brb01 and Brb02), lytic toBacteroides ruminicola ssbrevis AR20, were isolated from sewage water. Both phages possessed polyhedral heads and long noncontractile tails, and were classified as Siphoviridae of morphotype B1. Bacteria resistant to phages Brb01 and Brb02 arose following lysis of broth cultures. Survivors of Brb01 infection were capsulated but remained susceptible to Brb02 infection. Survivors of Brb02 infection were noncapsulated and were resistant to attack by both Brb01 and Brb02. Neither phage lysogenized the host. Both phages contained double-stranded DNA, and their restriction endonuclease digestion patterns indicated that the phage genomes were circularly permuted and terminally redundant. Phage Brb01 genome was examined in greater detail and confirmed to be circularly permuted, of size 33 kb, with a terminal redundancy of 2 kb, or 6% of the length of the genome. Circularly permuted genomes in phages of rumen bacteria do not appear to have been reported previously.At present, there is considerable interest in the genetic manipulation of rumen bacteria. The characterization of the phages described herein provides the basic information required for their use in the construction of vectors for the transfer of genetic material.  相似文献   

8.
A strategy is developed to use database-derived - constraints during simulated annealing procedures for protein solution structure determination in order to improve the Ramachandran plot statistics, while maintaining the agreement with the experimental constraints as the sole criterion for the selection of the family. The procedure, fully automated, consists of two consecutive simulated annealing runs. In the first run, the database-derived - constraints are enforced for all aminoacids (but prolines and glycines). A family of structures is then selected on the ground of the lowest violations of the experimental constraints only, and the - values for each residue are examined. In the second and final run, the database-derived - constraints are enforced only for those residues which in the first run have ended in one and the same favored - region. For residues which are either spread over different favored regions or concentrated in disallowed regions, the constraints are not enforced. The final family is then selected, after the second run, again only based on the agreement with the experimental constraints. This automated approach was implemented in DYANA and was tested on as many as 12 proteins, including some containing paramagnetic metals, whose structures had been previously solved in our laboratory. The quality of the structures, and of Ramachandran plot statistics in particular, was notably improved while preserving the agreement with the experimental constraints.  相似文献   

9.
Summary The DNA homology and adsorption specificity of newly isolated virulent bacteriophages of P. aeruginosa have been studied. On the basis of this analysis all phages were divided into four groups: k, m, mnP78-like and mnF82-like bacteriophages. DNA's of k as well as m phages were shown to possess different restriction patterns although they have an extensive homology. Unlike other groups, k phages were characterized by the presence of T4 DNA ligase-repaired, single-chain breaks.Abbreviations kbp kilobase pairs - EM electron microscopy  相似文献   

10.
Long  S. P.  Baker  N. R.  Raines  C. A. 《Plant Ecology》1993,(1):33-45
Understanding how photosynthetic capacity acclimatises when plants are grown in an atmosphere of rising CO2 concentrations will be vital to the development of mechanistic models of the response of plant productivity to global environmental change. A limitation to the study of acclimatisation is the small amount of material that may be destructively harvested from long-term studies of the effects of elevation of CO2 concentration. Technological developments in the measurement of gas exchange, fluorescence and absorption spectroscopy, coupled with theoretical developments in the interpretation of measured values now allow detailed analyses of limitations to photosynthesisin vivo. The use of leaf chambers with Ulbricht integrating spheres allows separation of change in the maximum efficiency of energy transduction in the assimilation of CO2 from changes in tissue absorptance. Analysis of the response of CO2 assimilation to intercellular CO2 concentration allows quantitative determination of the limitation imposed by stomata, carboxylation efficiency, and the rate of regeneration of ribulose 1:5 bisphosphate. Chlorophyll fluorescence provides a rapid method for detecting photoinhibition in heterogeneously illuminated leaves within canopies in the field. Modulated fluorescence and absorption spectroscopy allow parallel measurements of the efficiency of light utilisation in electron transport through photosystems I and IIin situ.Abbreviations A net rate of CO2 uptke per unit leaf area (µmol m–2 s–1) - Asat light-saturated A - A820 change in absorptance of PSI on removal of illumination (OD) - c CO2 concentration in air (µmol mol–1) - ca c in the bulk air; ci, c in the intercellular spaces - ce carboxylation efficiency (mol m–2 s–1) - E transpiration per unit leaf area (mol m–2 s–1) - F fluorescence emission of PSII (relative units) - Fm maximal level of F - Fo minimal level of F upon illumination when PSII is maximally oxidised - Fs the steady-state F following the m peak - Fv the difference between Fm and Fo - F'm maximal F' generated after the m peak by addition of a saturating light pulse - F'o the minimal level of F' after the m peak determined by re-oxidising PSII by far-red light - g1 leaf conductance to CO2 diffusion in the gas phase (mol m–2 s–1) - g'1 leaf conductance to water vapour diffusion in the gas phase (mol m–2 s–1) - kc and ko the Michaelis constants for CO2 and O2, respectively, (µmol mol–1); - Jmax the maximum rate of regeneration of rubP (µmol m–2 s–1) - l stomatal limitation to CO2 uptake (dimensionless, 0–1) - LCP light compensation point of photosynthesis (µmol m–2 s–1) - oi the intercellular O2 concentration (mmol mol–1) - Pi cytosol inorganic phosphate concentration - PSI photosystem I - PSII photosystem II - Q photon flux (µmol m–2 s–1) - Qabs Q absorbed by the leaf - rubisCO ribulose 1:5 bisphosphate carboxylase/oxygenase; rubP, ribulose 1:5 bisphosphate; s, projected surface area of a leaf (m2) - Vc,max is the maximum rate of carboxylation (µmol m–2 s–1) - Wc the rubisCO limited rate of carboxylation (µmol m–2 s1) - Wj the electron transport limited rate of regeneration of rubP (µmol m–2 s–1) - Wp the inorganic phosphate limited rate of regeneration of rubP (µmol m–2 s–1) - absorptance of light (dimensionless, 0–1) - a of standard black absorber 1, of leaf - s of integrating sphere walls - , CO2 compensation point of photosynthesis (µmol mol–1) - the specificity factor for rubisCO carboxylation (dimensionless) - , convexity of the response of A to Q (dimensionless 0–1) - the quantum yield of photosynthesis on an absorbed light basis (A/Qabs; dimensionless) - the quantum yield of photosynthesis on an incident light basis (A/Q; dimensionless) - app the maximum - m the maximum - m,app the photochemical efficiency of PSII (dimensionless, 0–1) - PSII,m the maximum   相似文献   

11.
Summary Candida wickerhamii growing on cellobiose produced -glucosidase with high activity against -nitrophenyl glucoside (PNPG) but low activity against cellobiose. -glucosidase production was constitutive, and was repressed by -glucosides and glucose. -glucosides containing an aromatic moiety in the aglycon were the best substrates for -glucosidase indicating that the enzyme is an aryl--glucosidase. A -glucosidase from C. wickerhamii cells was purified by (NH4)2SO4 precipitation, dialysis, ion-exchange chromatography and gel filtration. The purified enzyme was homogeneous as shown by sodium-dodecyl-sulphate polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme hydrolysed PNPG but not cellobiose. The Km of the enzyme was 0.185 mM. Glucose inhibited the enzyme competitively and the Ki was 7.5 mM. The apparent molecular mass was 97,000. The optimum pH and temperature for enzyme activity were between pH 7 and 7.4 and 40°C respectively. At temperatures of 45°C and greater the enzyme was inactivated. The activation energy of the enzyme was 29.4 kJ · mol-1.  相似文献   

12.
Photon yields of oxygen evolution at saturating CO2 were determined for 44 species of vascular plants, representing widely diverse taxa, habitats, life forms and growth conditions. The photonyield values on the basis of absorbed light ( a) were remarkably constant among plants possessing the same pathway of photosynthetic CO2 fixation, provided the plants had not been subjected to environmental stress. The mean a value ±SE for 37 C3 species was 0.106±0.001 O2·photon-1. The five C4 species exhibited lower photon yields and greater variation than the C3 species ( a=0.0692±0.004). The a values for the two Crassulaceanacid-metabolism species were similar to those of C3 species. Leaf chlorophyll content had little influence on a over the range found in normal, healthy leaves. Chlorophyll fluorescence characteristics at 77 K were determined for the same leaves as used for the photon-yield measurements. Considerable variation in fluorescence emission both at 692 nm and at 734 nm, was found 1) among the different species; 2) between the upper and lower surfaces of the same leaves; and 3) between sun and shade leaves of the same species. By contrast, the ratio of variable to maximum fluorescence emission at 692 nm (Fv/FM, 692) remained remarkably constant (The mean value for the C3 species was 0.832±0.004). High-light treatments of shade leaves resulted in a reduction in both a and the Fv/FM, 692 ratio. The extent of the reductions increased with time of exposure to bright light. A linear relationship was obtained when a was plotted against Fv/FM, 692. The results show that determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively. This is especially valuable in field work where it is often impossible to obtain appropriate controls.Abbreviations and symbols CAM Crassulacean acid metabolism - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - Fo, FM, Fv instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield (absorbed light) - i photon yield (incident light) C.I.W.-D.P.B. Publication No. 923  相似文献   

13.
Sequestered actin in chick embryo fibroblasts   总被引:1,自引:0,他引:1  
Chick embryo fibroblasts contain about 75-100 M unpolymerized actin and at least four proteins which can bind actin monomers, actin depolymerizing factor (ADF), gelsolin, profilin, and thymosin 4 (T4). Fibroblast extracts are analyzed by non-denaturing polyacrylamide gel electrophoresis and immunoblotting where most of the G-actin is detected as a complex with T4. When fibroblast extracts are fractionated by gel filtration and the fractions are analyzed by PAGE and HPLC, most of the G-actin elutes in a peak that also contains T4 at an overall molar ratio of 1.9:1 relative to actin. Gelsolin, profilin, and ADF are also detectable in the gel filtration eluate and at least partly coelute with actin, and account for only a minor fraction of the soluble actin pool. These observations indicate that under the growth conditions studied, T4 is the major actin-sequestering protein in fibroblasts.  相似文献   

14.
A comparative study was made of a group ofPseudomonas aeruginosa virulent giant DNA bacteriophages similar to phage KZ in several genetic and phenotypic properties (particle size, particle morphology, genome size, appearance of negative colonies, high productivity, broad spectrum of lytic activity, ability to overcome the suppressing effect of plasmids, absence of several DNA restriction sites, capability of general transduction, pseudolysogeny). We have recently sequenced the phage KZ genome (288 334 bp) [J. Mol. Biol., 2002, vol. 317, pp. 1–19]. By DNA homology, the phages were assigned to three species (represented by phages KZ, Lin68, and EL, respectively) and two new genera (KZ and EL). Restriction enzyme analysis revealed the mosaic genome structure in four phages of the KZ species (KZ, Lin21, NN, and PTB80) and two phages of the EL species (EL and RU). Comparisons with respect to phage particle size, number of structural proteins, and the N-terminal sequences of the major capsid protein confirmed the phylogenetic relatedness of the phages belonging to the KZ genus. The origin and evolution of the KZ-like phages are discussed. Analysis of protein sequences encoded by the phage KZ genome made it possible to assume wide migration of the KZ-like phages (wandering phages) among various prokaryotes and possibly eukaryotes. Since the phage KZ genome codes for potentially toxic proteins, caution must be exercised in the employment of large bacteriophages in phage therapy.  相似文献   

15.
Phages infecting the industrially important Actinoplanes strain SN223 were isolated from soil samples collected at the shores of inland waters in Germany. The genome sizes range from 53 kb to 58 kb. Preliminary analyses revealed G+C contents comparable with the G/C bias of the host. Electron microscopy of three selected viruses displayed no obvious morphological differences, the phage heads being icosahedral and their tails non-contractible. Two of the phages (Asp2, Asp3.1) characterized in more detail are capable of provoking putative pseudolysogenic growth of the host bacterium. The carrier state for Asp2, in which cells are tightly packed with viruses, was demonstrated by electron microscopy. The latter phage is apparently widely distributed, as it was isolated from regions which are distantly located, i.e. more than 600 km apart from each other.  相似文献   

16.
Solute mobilities of 28 compounds in isolated cuticular membranes (CM) from Capsicum annuum L. fruit, Citrus aurantium L. and Pyrus communis L. leaves were studied using unilateral desorption from the outer surface. First-order rate constants of desorption (k*), which are directly proportional to the diffusion coefficient in the waxy outer limiting skins of cuticles were measured. When log k* was plotted vs. molar volumes of test compounds linear graphs were obtained. The y-intercepts of these graphs (k*) represent the mobility of a hypothetical molecule having zero molar volume and the slopes of the graphs () represent the size selectivity of the barrier and are related to the free volume available for diffusion. Thus, solute mobilities in cuticles are composed of two independent terms which are subtractive. If k* and are known, k* can be estimated for any solute from its molar volume (Vx) using the equation log k*=log k* –Vx. These parameters were used to analyse the effects of plant species, extraction of cuticular waxes and molecular structure of solutes on solute mobilities in plant cuticles. For aliphatic solutes, k* was a factor of 10 smaller than for cyclic compounds, while was 0.011 and 0.012, respectively. The k*-values for CM of the three species were very similar, but was higher for bitter-orange CM (0.012) than for those of pepper fruits and pear leaves (0.009). This has the consequence that differences in solute mobilities (k*) among cuticles from different plan species increase with increasing molar volumes of solutes. Our data and our analysis provide evidence that constituents of cuticular waxes are mobile, at least in the solid amorphous wax fraction, but mobility decreases rapidly with increasing molar volume. For instance, if amounts to 0.01, mobilities of wax monomers decrease by a factor of 10 for every increase in molar volume of 100 cm3 · mol–1. Thus, hexadecanoic acid is quite mobile in the amorphous wax fraction of Citrus (k*=1.5×10–6·s–1), but for dotriacontane having twice the molar volume, k* was only 2.5×10–9·s–1, which is almost three orders of magnitude smaller. Wax esters have even higher molar volumes and their mobilities will be even smaller (about 4×10–12·s–1 for a C48-ester). Since low chain mobilities are a prerequisite for low mobilities and permeabilities, the selective advantage of high-molecular-weight wax monomers in plant cuticular waxes becomes obvious. Extracting cuticular waxes from pear leaf CM increased solute mobilities by a factor of 182, but it had no effect on size selectivity. We interpret this result as evidence to the effect that cuticular waxes reduce mobility by increasing tortuosity of the diffusion path, rather than by decreasing the mean free path of diffusional jumps and jump frequencies of diffusants.Abbreviations CM cuticular membrane(s) - 2,4-D 2,4-dichloro-phenoxyacetic acid - LAB lactic acid buffer - MX polymer matrix membranes - UDOS unilateral desorption from the outer surface  相似文献   

17.
Gordillo FJ  Figueroa FL  Niell FX 《Planta》2003,218(2):315-322
The seaweed Ulva rigida C. Agardh (Chlorophyta) was cultured under two CO2 conditions supplied through the air bubbling system: non-manipulated air and 1% CO2-enriched aeration. These were also combined with N sufficiency and N limitation, using nitrate as the only N source. High CO2 in U. rigida led to higher growth rates without increasing the C fixed through photosynthesis under N sufficiency. Quantum yields for charge separation at photosystem II (PSII) reaction centres (PSII) and for oxygen evolution (O2) decreased at high CO2 even in N-sufficient thalli. Cyclic electron flow around PSII as part of a photoprotection strategy accompanied by decreased antennae size was suspected. The new re-arrangement of the photosynthetic energy at high CO2 included reduced investment in processes other than C fixation, as well as in carbon diverted to respiration. As a result, quantum yield for new biomass-C production (growth) increased. The calculation of the individual quantum yields for the different processes involved allowed the completion of the energy flow scheme through the cell from incident light to biomass production for each of the CO2 and N-supply conditions studied.Abbreviations A total thallus absorptance - Apig absorptance due to pigments - Astr Absorptance due to non-pigmented structures - a* spectrally averaged in vivo absorption cross-section of chlorophyll a - CCM carbon-concentrating mechanism - Chl chlorophyll - DOC dissolved organic carbon - ETR electron transport rate - Fv/Fm optimum quantum yield for PSII charge separation - GP gross O2 evolution rate - kpig specific light absorption coefficient for pigments - kstr specific light absorption coefficient for non-pigmented structures - OP optimum O2 evolution rate - PFR photon fluence rate - POC particulate organic carbon - PS photosystem - qN non-photochemical quenching - qP photochemical quenching - growth quantum yield for new biomass-C production - O2 quantum yield for gross O2 evolution - PSII quantum yield for PSII charge separation  相似文献   

18.
A [CO]HN(CA)CB-E.COSY pulse scheme is described for measurement of three-bond couplings, 3JCC, between carbonyl and aliphatic C carbons in ubiquitin, uniformly enriched with 13C and 15N. A Karplus relation, 3JCC = 1.28 cos2( - 120°) -1.02 cos( - 120°) +0.30 Hz, is obtained by correlating the 3JCC values measured for human ubiquitin with backbone angles from its crystal structure. As predicted, the new Karplus parametrization yields 3JCC values slightly larger than previously obtained by quantitative J correlation [Hu, J.-S. and Bax, A. (1997) J. Am. Chem. Soc., 119, 6360-6368], but considerably smaller than what has been reported on the basis of other E.COSY-type measurements carried out on flavodoxin.  相似文献   

19.
The most commonly quoted mechanism of the coupling between the electrochemical proton gradient and the formation of ATP from ADP and Pi assumes that all states of the F1 portion of the ATP synthase have subunits in tight, loose, and open conformations. Models based on this assumption are inconsistent with some of the available experimental evidence. A mechanism that includes an additional subunit conformation, closed, observed in the rat liver structure overcomes these difficulties.  相似文献   

20.
Summary An empirical correlation between the peptide 15N chemical shift, 15Ni, and the backbone torsion angles i, i–1 is reported. By using two-dimensional shielding surfaces (i1–1), it is possible in many cases to make reasonably accurate predictions of 15N chemical shifts for a given structure. On average, the rms error between experiment and prediction is about 3.5 ppm. Results for threonine, valine and isoleucine are worse (4.8 ppm), due presumably to 1-distribution/-gauche effects. The rms errors for the other amino acids are 3 ppm, for a typical maximal chemical shift range of 15–20 ppm. Thus, there is a significant correlation between 15N chemical shift and secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号