首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By comparison of E. coli WP2 with CM891 (uvrA- pKM101) we found that pKM101 plasmid and uvrA- mutation considerably enhanced both spontaneous and chemically-induced reversion at the trp locus. However, little or no increase was observed for forward mutation at the A2C locus. Furthermore, mutation frequency decline was considerably greater for trp reversion than for mutation to A2Cr. Thus neither error-prone repair nor point mutation seemed likely to be the major mechanism for forward mutation at the A2C locus. Results for spontaneous mutation of recA-, polA- and gyrA- strains showed that polA- and gyrA- gave good increases in forward mutation but not in reversion. It was inferred that deletion, transposition and/or larger chromosomal effects rather than point mutation were mainly responsible for most forward mutation.  相似文献   

2.
Four isogenic strains of Escherichia coli with the same auxotrophic marker (arg Fam--namely wild-type, uvrA-, polA- and recA-) were used for testing the lethalities and mutagenicities of 1-naphthyl N-methyl-N-nitrosocarbamate (nitroso-NAC), 3-methylphenyl N-methyl-N-nitrosocarbamate (nitroso-MTMC), and 3,4-dimethylphenyl N-methyl-N-nitrosocarbamate (nitroso-MPMC). The strains recA- and polA- showed a similarly higher sensitivity to killing than wild-type and uvrA- after treatments with each of the three chemicals, whereas the strains wild-type, uvrA-, and polA- were equally mutable by these compounds at equal doses. The strain recA- was hardly mutable by nitroso-NAC, but significant levels of Arg+ mutations were observed after treatments with nitroso-MTMC and nitroso-MPMC. These and previous results suggest that both nitroso-MTMC and nitroso-MPMC are similar in their mutagenicity pattern to N-methyl-N'-nitro-N-nitrosoguanidine whereas nitroso-NAC is similar to methyl methanesulfonate or X-rays, and that the major damage to DNA of the three agents is not excisable by the uvrA+-dependent excision repair, probably methylation in DNA.  相似文献   

3.
A study was made of the adaptive response to methylmethane sulfonate (MMS) in E. coli. (18 strains of B, WP2, and H/r30 groups, including three strains of bacteria with pKM101 plasmid). The adaptation of wild type cells and uvrA- and uvrB- mutants to non-lethal concentrations of MMS (10-30 mkg/ml during 90-120 min) leads to a significant increase in their resistance to lethal MMS concentrations (10-30 mM for 10-120 min): the dose modifying factor (DMF) being 1.5-1.8. In single recA or lexA mutants (or double recA uvr- and lexA uvr- mutants) the efficiency of adaptive response to MMS was significantly lower: the DMF being 1.1-1.2. In Bs-1 gamma R strain with intragenic suppressor of lexA gene the adaptive response efficiency was the same as in B/r (recA+lexA+) strain. There is no adaptive response to MMS in polA- strains. The adaptive response to MMS in E. coli is different from that to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-methylnitrosourea (MNM), because in these two cases it is absolutely lexA-recA dependent. It is supposed that a partial recA-lexA dependence of the adaptive response to MMS in E. coli may be due to a specific MMS-induced lethal damage that induces an adaptive repair non-related to the system of recA-lexA-independent adaptive responses to MNNG and MNM. The presence of a plasmid of drug resistance pKM101 exerts no influence on the value, efficiency and recA-lexA-dependence of the adaptive response of E. coli to MMS.  相似文献   

4.
2 strains of S. typhimurium, TA98 and TA100, and 2 strains of E. coli, WP2(pKM101) and WP2uvrA-(pKM101) were used to study mutagenesis by 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) in the dark and in the presence of near-ultraviolet (NUV) light both without metabolic activation and with rat-liver S9 at 3 levels (4, 10 and 30% in standard cofactors). The S9-independent base substitution mutagenic activity of 8-MOP plus NUV light was confirmed in WP2(pKM101), and a similar activity was seen for 4,5',8-TMP, although neither substance was active in TA100. The frameshift mutagenic activity of 8-MOP in the dark in TA98 was not confirmed despite histidine levels which would ensure DNA replication, but this may be due to the lower concentrations of 8-MOP achieved in the common solvent system adopted. Both 8-MOP and 4,5',8-TMP were mutagenic in WP2uvrA-(pKM101) after microsomal activation, and the responses were similar whether experiments were conducted in the dark or in NUV light. In view of the oral administration of 8-MOP to psoriasis patients, this finding may be of relevance in risk assessment, and tends to suggest that topical application of 4,5',8-TMP to psoriatic patients may present reduced risk of malignant disease.  相似文献   

5.
We used bacterial mutation assays to assess the mutagenic and co-mutagenic effects of power frequency magnetic fields (MF). For the former, we exposed four strains of Salmonella typhimurium (TA98, TA100, TA1535, TA1537) and two strains of Escherichia coli (WP2 uvrA, WP2 uvrA/pKM101) to 50Hz, 14mT circularly polarized MF for 48h. All results were negative. For the latter, we treated S. typhimurium (TA98, TA100) and E. coli (WP2 uvrA, WP2 uvrA/pKM101) cells with eight model mutagens (N-ethyl-N'-nitro-N-nitrosoguanidine, 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide, 4-nitroquinoline-N-oxide, 2-aminoanthracene, N(4)-aminocytidine, t-butyl hydroperoxide, cumen hydroperoxide, and acridine orange) with and without the MF. The MF induced no significant, reproducible enhancement of mutagenicity. We also investigated the effect of MF on mutagenicity and co-mutagenicity of fluorescent light (ca. 900lx for 30min) with and without acridine orange on the most sensitive tester strain, E. coli WP2 uvrA/pKM101. Again, we observed no significant difference between the mutation rates induced with and without MF. Thus, a 50Hz, 14mT circularly polarized MF had no detectable mutagenic or co-mutagenic potential in bacterial tester strains under our experimental conditions. Nevertheless, some evidence supporting a mutagenic effect for power frequency MFs does exist; we discuss the potential mechanisms of such an effect in light of the present study and studies done by others.  相似文献   

6.
Sodium arsenite at a non-toxic concentration was found to inhibit strongly mutagenesis induced by ultraviolet light (UV), 4-nitroquinoline-1-oxide (4NQO), furylfuramide (AF-2) and methyl methane-sulfonate (MMS) as well as spontaneous mutation in the reversion assay of E. coli WP2uvrA/pKM101. The effect was not, however, seen in the case of the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In order to elucidate the mechanism of the mutation-inhibitory effect of sodium arsenite, its action on umuC gene expression and DNA-repair systems was investigated. It was found that sodium arsenite depressed beta-galactosidase induction, corresponding to the umuC gene expression. For UV-irradiated E. coli strains possessing different DNA-repair capacities, sodium arsenite decreased the UV survival rates of WP2, WP2uvrA[uvrA] and WP67[uvrA polA], increased those of SOS-uninducible strains having either the recA+ or uvrA+ such as CM571 [recA], CM561 [lexA(Ind-)] and CM611[uvrA lexA (Ind-)], and did not affect that of the uvrA recA double mutant, WP100. From these results, we assume that sodium arsenite may have at least two roles in its antimutagenesis: as an inhibitor of umuC gene expression, and as an enhancer of the error-free repairs depending on the uvrA and recA genes.  相似文献   

7.
Compounds of various chemical classes were comparatively assayed in the Ames reversion test with his- S. typhimurium strains TA1535, TA157 , TA1538, TA98, TA100, and, in part, TA97 , and in a DNA-repair test with trp- E. coli strains WP2 (repair-proficient), WP67 (uvrA- polA-) and CM871 (uvrA- recA- lexA-). A liquid micromethod procedure for the assessment of the minimal inhibitory concentration (MIC) of test compounds, using the same reagents as the Ames test, was set up and calibrated in its technical details. Other techniques (spot test and treat-and-plate method) were applied to a number of compounds in order to obtain more complete information on their DNA-damaging activity in E. coli. From a qualitative standpoint, the results obtained in the reversion test and in the DNA-repair test (liquid micromethod) were overlapping for 96 (59 positive and 37 negative) out of 135 compounds (71.1%). There was disagreement for 39 compounds (28.9%), 9 of which were positive only in the reversion test (8 requiring metabolic activation and 5 genotoxic in the treat-and-plate method). 30 compounds were positive only in the lethality test, showing a direct DNA-damaging activity, which in half of the cases was completely eliminated by S9 mix. Although the experimental protocol intentionally included several compounds already reported as nonmutagenic carcinogens or as noncarcinogenic mutagens, the overall accuracy was 64.5% for the reversion test and 72.4% for the DNA-repair test, as evaluated for 75 compounds classified according to their carcinogenic activity. Quantitation of results was obtained in the Ames test by relating the net number of revertants to nmoles of compound and in the DNA-repair test by means of a formula relating the difference and ratio of MICs in repair-proficient and -deficient bacteria to nmoles of compound. Following these criteria, the genotoxic potency varied over a 4.5 X 10(7)-fold range among compounds positive in the reversion test and over a 6 X 10(9)-fold range among compounds damaging E. coli DNA. The genotoxic potencies in the two bacterial systems were correlated within the majority of the chemical classes under scrutiny.  相似文献   

8.
The "Bacterial Reverse Mutation Assay" is generally accepted to analyse the genotoxic capacity of single compounds or complex mixtures such as cigarette-smoke condensates. With an adapted and modified Ames assay, the mutagenicity of native cigarette mainstream whole smoke (WS) and its gas/vapour phase (GVP) was studied. The bacteria were directly exposed to the smoke in a CULTEX1 system closely connected to a smoking robot (VC10). A variety of standard tester strains (TA98, TA100, TA1535, TA1537, TA1538, TA102, WP2uvrApKM101) and descendants of TA98 (YG1021, YG1024, YG1041) and TA100 (YG1026, YG1029 and YG1042) were exposed to whole and filtered smoke of the research cigarette K2R4F to find the most sensitive strains for analysing the mutagenic activity of these test atmospheres. Mutagenicity of WS was detected by TA98, TA100 and their YG descendant strains as well as by WP2uvrApKM101 in the presence of S9 mix. The GVP induced a mutagenic signal in TA100, YG1029 and YG1042 and WP2uvrApKM101 only in the absence of S9 mix. To detect mutagenicity in WS the presence of the plasmid pKM101 is required and a frame-shift mutation is more effective than a missense mutation. To detect mutagenicity in GVP, the presence of the plasmid pKM101 and a missense mutation are required. The differentiating capacity of this modified Ames assay was demonstrated by exposing strain TA98 to WS and TA100 to the GVP of cigarettes with different tar content. The mutagenic activity of WS and the GVP increased with rising tar content of the cigarettes with two exceptions in WS. Thus, the concept of tar content alone is misleading and does not reflect the mutagenic activity of a cigarette.  相似文献   

9.
We used bacterial mutation and yeast genotoxicity tests to evaluate the effects of intermediate frequency (IF; 2 kHz, 20 kHz and 60 kHz) magnetic fields (MFs) on mutagenicity, co-mutagenicity and gene conversion. We constructed a Helmholtz type exposure system that generated vertical and sinusoidal IF MFs, such as 0.91 mT at 2 kHz, 1.1 mT at 20 kHz and 0.11 mT at 60 kHz. Mutagenicity, co-mutagenicity and gene conversion assays were performed for each of the three MF exposure conditions. Mutagenicity testing was performed in four strains of Salmonella typhimurium (TA98, TA100, TA1535 and TA1537) and two strains of Escherichia coli (WP2 uvrA and WP2 uvrA/pKM101) to cover a wide spectrum of point mutations. For co-mutagenicity tests, we used four sensitive test strains (TA98, TA100, WP2 uvrA and WP2 uvrA/pKM101) with five chemical mutagens (t-butyl hydroperoxide (BH, a hydroxyl free radical precursor), 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide (AF2) and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG, DNA reactive reagents), benz[a]pyrene (BaP) and 2-aminoanthracene (2AA, DNA reactive promutagens). Gene conversion testing was performed in the yeast test strain, Saccharomyces cerevisiae XD83. We also examined the effects on the repair process of DNA damage by UV irradiation. No statistically significant effects were observed between exposed and control groups in any of the genotoxicity tests, indicating that the IF MFs (0.91 mT at 2 kHz, 1.1 mT at 20 kHz or 0.11 mT at 60 kHz) do not have mutagenic or co-mutagenic potentials for the chemical mutagens tested under these experimental conditions. Our findings also indicate that these IF MFs do not induce gene conversion or affect the repair process of DNA damage in eukaryotic cells.  相似文献   

10.
The mutagenic and antimutagenic effects of linalool, linalyl acetate and beta-caryophyllene were evaluated by the bacterial reverse mutation assay on Salmonella typhimurium TA 98 and TA 100, and on Escherichia coli WP2uvrA strains. Neither linalool nor beta-caryophyllene showed mutagenicity, but linalyl acetate induced a statistically significant increase in the number of revertant colonies in WP2uvrA, both with and without S9 mixture. Linalool was devoid of antimutagenic activity against 2-nitrofluorene (2NF), sodium azide (SA), methyl methane sulfonate (MMS) and 2-aminoanthracene (2AA). In contrast, beta-caryophyllene showed a strong antimutagenic activity against 2NF: at the maximum concentration tested (6.40mg/plate) the number of 2NF-induced revertant colonies was reduced by 83.9%. beta-Caryophyllene also showed to counteract the mutagenicity of SA (in TA 100), MMS and 2AA (in WP2uvrA): the effect was weak against SA (inhibition lower than 25%) and moderate against MMS and 2AA (up to 30.5%). The antimutagenic activity of beta-caryophyllene observed here suggests further studies to evaluate its possible chemopreventive properties.  相似文献   

11.
Two microbial screening test systems for gene (point) mutations, the Salmonella typhimurium assay (TA1535, TA1537, TA1538, TA98 and TA100) and the Escherichia coli WP2 reverse-mutation system (WP2, WP2uvrA, WP2pKM101 and WP2uvrApKM101), were compared with regard to sensitivity toward a broad spectrum of compounds that cause base-pair or frameshift mutations and that have known carcinogenic qualities. Based on available published literature we found that all 44 carcinogens and 9 non-carcinogens examined in both test systems also met with criteria for data acceptance drawn up by us. The results obtained are: firstly, that the Salmonella assay is decidedly better validated than the E. coli WP2 test; and secondly, that the E. coli test system sensitivity (91%) is fully on a par with the sensitivity of the Salmonella assay (72%). This last is in divergence from earlier reports, e.g. Brusick et al. (1980), and this difference must be ascribed to the new plasmid-containing strains. The many compounds not tested in the E. coli department result in fewer false negatives in the E. coli test system and their omission constitutes a bias in favour of the E. coli assay. By eliminating compounds that are negative in Salmonella and dropped from the WP2 analysis owing to insufficient data, the sensitivity of the Salmonella system is raised to 84% as compared with 91% for the WP2 assay. The results further indicate that some of the tester strains are superfluous, and show an exceedingly sensitive test can be performed by combining the best tester strains from the two test systems.  相似文献   

12.
We examined the effects of host mutations affecting "SOS"-mediated UV light reactivation on the survival of bacteriophage T7 damaged by UV light or methyl methanesulfonate (MMS). Survival of T7 alkylated with MMS was not affected by the presence of plasmid pKM101 or by a umuC mutation in the host. The survival of UV light-irradiated T7 was similar in umuC+ and umuC strains but was slightly enhanced by the presence of pKM101. When phage survival was determined on host cells preirradiated with a single inducing dose of UV light, these same strains permitted higher survival than that seen with noninduced cells for both UV light- and MMS-damaged phage. The extent of T7 reactivation was approximately proportional to the UV light inducing dose inflicted upon each bacterial strain and was dependent upon phage DNA damage. Enhanced survival of T7 after exposure to UV light or MMS was also observed after thermal induction of a dnaB mutant. Thus, lethal lesions introduced by UV light or MMS are apparently repaired more efficiently when host cells are induced for the SOS cascade, and this inducible reactivation of T7 is umuC+ independent.  相似文献   

13.
The mutagenic potential of 9-[(3-dimethylaminopropyl)amino]-acridine and its 1-, 2-, 3- and 4-nitro derivatives was studied in several strains of Salmonella typhimurium carrying the frameshift marker hisC3076. The strains all carried deep rough (rfa) mutations, and were either wild-type with respect to DNA repair capacity or carried recA, uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without plasmid pKM101 were also studied. The des-nitro compound resembled 9 aminoacridine and other simple intercalating compounds. Both toxicity and mutagenesis were apparently unaffected by the uvrB and recA mutations or by the presence of plasmid pKM101. However, mutagenicity was reduced by the polA1 mutation, and virtually eliminated by the polA3 mutation. The drug was substantially more toxic in the latter, slightly more toxic in the former, of these polA- strains. Plasmid pKM101 enhanced mutagenesis and protected from toxicity in both polA1- and polA3- strains, although it did not restore either of these parameters to the level in the wild-type strain. The 2-nitro compound was generally similar to the des-nitro compound, except that it was considerably more toxic and apparently non-mutagenic in the recA-bearing strain. By contrast, mutagenicity of the 3- and 4-nitro compounds was enhanced by the uvrB mutation and by the presence of the plasmid. These compounds were highly toxic but non-mutagenic in the recA- strain, and showed some increased toxicity in polA1- and polA3- strains. The 1-nitro compound has been previously found to cross-link DNA. Unlike well-characterised cross-linkers such as mitomycin C it was highly mutagenic in the uvrB- strain, and this mutagenesis was enhanced by plasmid pKM101, but eliminated by the recA mutation. At high doses, where the drug was completely toxic towards uvrB- or recA-carrying strains, it became mutagenic in the DNA-repair-proficient strains. This 'high-dose' mutagenesis was enhanced by plasmid pKM101, but reduced by the polA1 mutation and almost eliminated by the polA3 mutation. Although there are several possible interpretations of these data, they are compatible with the suggestion that the lesion induced by high doses (but not by low doses) of nitracrine is a cross-link, but that this is not the major mutagenic lesion.  相似文献   

14.
In relation to the observed association of carcinogenesis with parasitic infections, the mutagenicity of extracts of Schistosoma japonicum and Clonorchis sinensis was examined. In the bacterial mutagenicity tests using the Ames Salmonella typhimurium strains TA98, TA100, TA97 and TA102, and Escherichia coli WP2 and WP2 uvrA pKM101 Schistosoma soluble egg antigen and a homogenate of adult Schistosoma worms showed no positive responses either in the presence or in the absence of S9 mix. Likewise, adult worm extracts of Clonorchis showed no mutagenicity. The Schistosoma soluble egg antigen showed a weak but significant activity for the induction of Epstein-Barr virus expression in viral genome-carrying human lymphoblastoid cells in culture. This phenomenon suggests that the soluble egg antigen possesses tumor-promoting activity.  相似文献   

15.
46 chemicals of various classes and structures, including 30 known animal carcinogens, were evaluated for genotoxic effects using the Escherichia coli rec assay with strains WP2 (wild-type) and WP100 (uvrA- recA-) in qualitative and quantitative spot tests and in quantitative suspension tests. The rec assay detected 17 of 30 known carcinogens as genotoxic agents, including mitomycin C and diethylnitrosamine, both negative in the Salmonella/Ames test as utilized in these studies. The rec assay in conjunction with the Salmonella/Ames test detected 20 of 30 known carcinogens as genotoxic agents. Azo/aminoazo carcinogens showed little gentoxicity, and the aromatic amine 2-acetylaminofluorene was non-genotoxic in the rec assay. The rec assay was more effective than pol tests with E. coli strains W3110/p3478 and strains WP2/WP67. Effectiveness of the rec assay was related to the DNA repair-defective nature of the uvrA- recA- genotype of strain WP100.  相似文献   

16.
Y Takizawa  N Hachiya 《Mutation research》1984,137(2-3):133-137
Two preparations of maltitol (4-O-alpha-D-glucopyranosyl-D-sorbitol), hydrogenated glucose syrups and maltitol crystal, were examined for genotoxic potential by a battery of short-term tests. In the bacterial reversion assay, maltitol induced no detectable revertants in any of the tester strains, Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538, or Escherichia coli WP2/pKM101 at doses of 0.5-50 mg per plate with and without rat liver S9 mix. In the micronucleus test, no significant increase in the frequency of micronucleated erythrocytes was observed in bone marrow of mice after administration of the two preparations at 3.75-30 g per kg by gastric intubation.  相似文献   

17.
The action of near-ultraviolet (UV-365 nm) radiation in cellular inactivation (biological measurements) and induction and repair of DNA strand breaks (physical measurements) were studied in a repair-proficient strain and in polA-, recA-, uvrA-, and polA uvrA-deficient strains of Escherichia coli K-12. The induction of breaks in the polA and polA uvrA strains was linear with dose (4.0 and 3.7 X 10(-5) breaks/2.5 X 10(9) daltons/Jm-2, respectively). However, in the recA-, uvrA-, and repair-proficient strains, there was an initial lag in break induction at low doses and then a linear induction of breaks at higher doses with rates of 4.6, 2.8, and 3.2 X 10(-5) breaks/2.5 X 10(9) daltons/Jm-2, respectively. We interpret these strain differences as indicating simultaneous induction and repair of breaks in polymerase 1 (polA)-proficient strains under the 0 degrees C, M9 buffer irradiation conditions that, for maximum efficiency, require both the polA and recA gene products. Strand-break rejoining also occurred at 30 degrees C in complete growth medium. We propose that at least three (and possibly four) distinct types of pathways can act to reduce the levels of 365-nm radiation-induced strand breaks. A quantitative comparison of the number of breaks remaining with the number of lethal events remaining after repair in complete medium at 30 degrees C showed that between one and three breaks remain per lethal event in the wild-type and recA strains, whereas in the polA strain one order of magnitude more breaks were induced.  相似文献   

18.
5 oil dispersants and a sample of paraffin were devoid of mutagenic activity in the Ames reversion test, with and without S9 mix, using 7 his- S. typhimurium strains (TA1535, TA1537, TA1538, TA97, TA98, TA100, TA102). However, 3 dispersants produced direct DNA damage in E. coli WP2, which was not repairable in repair-deficient strains (WP2uvrA, CM871, TM1080), as shown by two different DNA-repair test procedures. The uvrA excision-repair system was in all cases the most important mechanism involved in repairing the DNA damage produced by oil dispersants, while the combination of uvrA with other genetic defects (polA, recA, lexA) decreased the efficiency of the system. The observed genotoxic effects were considerably lowered in the presence of S9 mix containing liver S9 fractions from Aroclor-treated rats. The sample of oil dispersant yielding the most pronounced DNA damage in repair-deficient E. coli failed to induce gene sfiA in E. coli (strain PQ37), using the SOS chromotest, or mitotic crossing-over in Saccharomyces cerevisiae (strain D5). The direct toxicity of the oil dispersant to both bacterial and yeast cells was markedly decreased in the presence of rat-liver preparations. These two short-term tests were effective in detecting the genotoxicity of both direct-acting compounds (such as 4-nitroquinoline N-oxide and methyl methanesulfonate) and procarcinogens (such as cyclophosphamide, 2-aminoanthracene and 2-aminofluorene). Moreover, the SOS chromotest was successfully applied to discriminate the activity of chromium compounds as related to their valence (i.e. Cr(VI) genotoxic and Cr(III) inactive). Combination of oil dispersants with Cr(VI) compounds did not affect the direct mutagenicity to S. typhimurium (TA102) of a soluble salt (sodium dichromate) nor did it result in any release of a water-soluble salt (lead chromate), as also confirmed by analytical methods. On the other hand, exposure to sunlight tended to decrease, to a slow rate, the direct genotoxicity of an oil dispersant in the bacterial DNA-repair test.  相似文献   

19.
When a mixture of N-nitrosomorpholine and S. typhimurium TA100 in saline was irradiated with near-ultraviolet light, mutagenesis of the bacteria took place. The same observation was made with S. typhimurium TA1535, E. coli WP2 uvrA, pKM101 and uvrA/pKM101. Several other nitrosamines showed ed the same, but weaker, effect. Evidence is presented to indicate that the mutagenicity arises from the cellular phosphate-mediated photochemical formation of direct-acting mutagen from the nitrosamine.  相似文献   

20.
The antimutagenic activity of trans-cinnamaldehyde (C6H5CH = CHCHO) on chemically induced mutagenesis has been shown in E. coli. Using the Ames Salmonella typhimurium tester strains TA1535 (hisG46 uvrB rfa) and TA100 (TA1535/pKM101), the effects of cinnamaldehyde on spontaneous reversions and reversions induced by 4-nitroquinoline-N-oxide(4NQO) and ethyl methanesulfonate (EMS) have been examined. To observe the effect of cinnamaldehyde in the absence of functional muc genes, a third strain, TA1535/pGW201 (pKM101 muc140: :Tn5) was included in the testing. Modifications of the standard Ames test procedures and direct-plating techniques were employed to study the "antimutagenic" response exerted by cinnamaldehyde. In all strains tested, concentrations of cinnamaldehyde up to 25 micrograms/ml slightly decreased the number of spontaneous reversions and induced reversions were more markedly reduced. The decreases in the numbers of 4NQO-induced revertants were greater than those decreases which occurred for EMS-induced reversions. There was no effect on viability in 1% (v/v) nutrient broth supplemented minimal medium containing 5-25 micrograms/ml of cinnamaldehyde. Cinnamaldehyde did not display any mucAB dependent or independent specificity against the mutagens used. On minimal medium supplemented with histidine and biotin, concentrations of cinnamaldehyde above 10 micrograms/ml were lethal for the strains tested. When the test medium was supplemented with 1-5% (v/v) liquid nutrient broth, viability was not affected at concentrations up to 25 micrograms/ml. For both TA100 and TA1535 the presence of 20 micrograms/ml of cinnamaldehyde in 1% (v/v) liquid nutrient broth-supplemented minimal glucose broth extended the lag phase for 2-4 h with no effect on survival. Depending on the test procedure employed, decreases in numbers of revertants may reflect lethality rather than antimutagenesis. When used to test for antimutagenesis rather than mutagenesis, modifications of the standard Ames test procedure may mimic an antimutagenic response due to a decrease in the total number of revertants seen even though enough cells survive to produce a background lawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号