首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various trialkyl phosphates were investigated as model compounds for DNA-phosphotriesters for their stability in neutral or alkaline conditions. The results show that phosphotriesters were highly stable even at strongly alkaline pH, with the exception of diethyl 2-hydroxyethyl phosphate (DHP). The extreme instability of the latter was found to be due to the 2-hydroxy function. In accordance with earlier interpretations the 2-hydroxyethyl group is proposed to participate in the formation of a highly reactive dioxaphospholane ring intermediate which decays rapidly by hydrolysis. Alkylation of 3'- and 5'-deoxythymidine monophosphates with methyl- or hydroxyethylnitrosourea (MNU, HENU) results in practically exclusive phosphate alkylation. In analogy with the model phosphotriesters, di(2'-deoxythymidine) phosphotriesters generated after reaction with MNU or HENU showed extreme dependence of their stabilities on the nature of the alkyl group transferred to phosphate. Whereas the methyl phosphotriester was highly stable, the corresponding hydroxyethyl analogue showed half lives of decay of less than 1 min (pH 12.5), 27 min (pH 9.1) and 60 min (pH 7). Thus the introduction of a 2-hydroxyethyl function into phosphate strongly decreases the stability of the phosphate link of DNA, resulting in DNA single strand breaks, in analogy to RNA phosphotriesters which have been found earlier to be highly unstable because of the presence of the ribose 2'-OH-group.  相似文献   

2.
DFT calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. Further, it was established that when the amine leaving group was a secondary amine, acyclovir or cefuroxime moiety the tetrahedral intermediate formation was the rate-limiting step such as in the cases of acyclovir ProD 1- ProD 4 and cefuroxime ProD 1- ProD 4. In addition, the linear correlation between the calculated and experimental rates provided a credible basis for designing prodrugs for masking bitter taste of the corresponding parental drugs which have the potential to release the parent drug in a sustained release fashion. For example, based on the DFT calculated rates the predicted t1/2 (a time needed for 50 % of the reactant to be hydrolyzed to products) for cefuroxime prodrugs, cefuroxime ProD 1- ProD 4, were 12 min, 18 min, 200 min and 123 min, respectively.
Figure
A representation Scheme showing the interconversion of cefuroxime prodrug to cefuroxime by a prodrug chemical approach  相似文献   

3.
The mechanism of the decomposition of ethyl and ethyl 3-phenyl glycidate in gas phase was studied by density functional theory (DFT) and MP2 methods. A proposed mechanism for the reaction indicates that the ethyl side of the ester is eliminated as ethylene through a concerted six-membered cyclic transition state, and the unstable intermediate glycidic acid decarboxylates rapidly to give the corresponding aldehyde. Two possible pathways for glycidic acid decarboxylation were studied: one via a five-membered cyclic transition state, and the other via a four-membered cyclic transition state. The results of the calculations indicate that the decarboxylation reaction occurs via a mechanism with five-membered cyclic transition state.
Figure
Two-step mechanism of decarboxylation of glycidic esters to give aldehydes and ketones  相似文献   

4.
DFT calculations, with VWN exchange correlation functional and double numeric basis set, were used to evaluate the energies required for the scission reactions taking place in the initial stage of the thermal degradation of Poly(methyl methacrylate) (PMMA) in the presence of a carbon nanotube (CNT). Side group and main chain scissions were investigated. The results averaged from five configurations of pure PMMA (DP?=?5) were used as references and compared to the results obtained for the five same configurations of PMMA grafted on three carbon nanotubes of similar diameter (1.49 nm). The bond dissociation energies (BDE) of main chain scission evaluated for grafted PMMA was 4 % less endothermic than for pure PMMA. These results seemed independent of the tested chirality (11,11); (12,10) and (16,5) of the carbon nanotubes. Comparisons with the BDE of the weakest bonds due to intrinsic defaults (head to head and unsaturated end chain) were performed.
Figure
Representation of PMMA radical oligomer and grafted carbon nanotube  相似文献   

5.
Quantum chemical computations (B3LYP/LACVP**) were applied to assess the impact of Au(I) complexation on activation barriers for sequential electrocyclization reactions (one a 1,2-dihydroazete ring-opening and another a pentadienyl cation ring-closure) proposed to occur during a complex reaction cascade that converts alkynes and imines to cyclopentenimines.
Figure
Gold in a complex cascade reaction  相似文献   

6.
The imine intermediates of tazobactam and sulbactam bound to SHV-1 β-lactamase were investigated by molecular dynamics (MD) simulation respectively. Hydrogen bond networks around active site were found different between tazobactam and sulbactam acyl-enzymes. In tazobactam imine intermediate, it was observed that the triazolyl ring formed stable hydrogen bonds with Asn170 and Thr167. The results suggest that conformation of imine determined the population of intermediates. In imine intermediate of tazobactam, the triazolyl ring is trapped in Thr_Asn pocket, and it restricts the rotation of C5-C6 bond so that tazobactam can only generate trans enamine intermediate. Further, conformational cluster analyses are performed to substantiate the results. These findings provide an explanation for the corresponding experimental results, and will be potentially useful in the development of new inhibitors.
Figure
The distribution of dihedral angle N4-C5-C6-C7 in two systems (imine_taz and imine_sul) along MD simulations  相似文献   

7.
The potential energy surfaces of the reactions of organometallic arene complexes of the type [(η 6-arene)MII(pic)Cl] (where pic = 2-picolinic acid, M = Ru or Os) were examined by a DFT computational study. Among the seven density functional methods, hybrid exchange functional B3LYP outperforms the others to explain the aquation of the complexes. The reactions and binding energies of RuII and OsII arene complexes with both 9EtG and 9EtA were studied to gain insight into the reactivity of these types of organometallic complexes with DNA. The obtained data rationalize experimental observation, contributing to partly understanding the potential biological and medical applications of organometallic complexes.
Figure
Reactions of [(η 6-arene)MII(pic)Cl] (M = Ru and Os)  相似文献   

8.
9.
Articaine, as a local anesthetic drug has been simulated in neutral and charged forms, and its interaction with the dimyristoylphosphatidylcholine (DMPC) lipid bilayer membrane is investigated by molecular dynamics simulation using GROMACS software. In order to obtain the optimum location of the drug molecules, as they penetrate into the membrane, umbrella sampling is applied and the free energy is calculated. The effect of protein binding to DMPC membrane on the process of drug diffusion through the membrane is considered. Five simulation systems are designed and by applying the potential of mean force, the molecular dynamics simulation on the system is performed. In light of the obtained results, the electrostatic potential, variation of lipid bilayer’s order parameter and the diffusion coefficient of drug are discussed.
Figure
Variations of Free energy versus the location of the drug molecule  相似文献   

10.
The interaction between one polychlorobiphenyl (3,3′,4,4′,-tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid–base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs.
Figure
Molecular orbital interaction diagram of stacked PCB77 and Adenine.  相似文献   

11.
In our quest to explore molecules with chemically significant regions where the Fukui function is negative, we explored reactions where the frontier orbital that indicates the sites for electrophilic attack is not the highest occupied molecular orbital. The highest occupied molecular orbital (HOMO) controls the location of the regions where the Fukui function is negative, supporting the postulate that negative values of the Fukui function are associated with orbital relaxation effects and nodal surfaces of the frontier orbitals. Significant negative values for the condensed Fukui function, however, were not observed.
Figure
The ?10?5isosurface of $ {f^{-}}\left( \mathbf{r} \right) $ (opaque silver surface) traces the nodal regions of the HOMO (translucent colored lobes, with different colors for different phases) of the phenoxide anion  相似文献   

12.
Azinomycin B—a well-known antitumor drug—forms cross-links with DNA through alkylation of purine bases and blocks tumor cell growth. This reaction has been modeled using the ONIOM (B3LYP/6-31?+?g(d):UFF) method to understand the mechanism and sequence selectivity. ONIOM results have been checked for reliability by comparing them with full quantum mechanics calculations for selected paths. Calculations reveal that, among the purine bases, guanine is more reactive and is alkylated by aziridine ring through the C10 position, followed by alkylation of the epoxide ring through the C21 position of Azinomycin B. While the mono alkylation is controlled kinetically, bis-alkylation is controlled thermodynamically. Solvent effects were included using polarized-continuum-model calculations and no significant change from gas phase results was observed.
Figure
Insights into the cross-linking mechanism of azinomycin B with DNA bases from hybrid QM/MM Computations  相似文献   

13.
Glutathione is an immensely important antioxidant, particularly in the central nervous system. The scavenging mechanism of glutathione towards the OH radical was studied theoretically, considering its neutral, non-zwitterionic form relevant to acidic media. Gibbs free barrier and released energies involved in hydrogen abstraction from the different sites of glutathione by an OH radical were studied at the B3LYP/6-31G(d,p), B3LYP/AUG-cc-pVDZ, M06/AUG-cc-pVDZ, M06-2X/AUG-cc-pVDZ levels of density functional theory. Solvation in bulk aqueous media was also studied at all these levels of theory employing the polarizable continuum model. Our study shows that a hydroxyl radical can abstract a hydrogen atom easily from glutathione. Thus, glutathione is shown to be an efficient scavenger of OH radicals, which is in agreement with the results of previous studies.
Figure
Hydrogen abstraction (H10) from the most stable conformer of GSH I by a hydroxyl radical  相似文献   

14.
X-ray crystallography studies have identified that most cyclic inhibitors of HIV protease (including cyclic ureas) bind in a symmetric manner, however some cyclic inhibitors, such as cyclic sulfamides, bind in a non-symmetric manner. This raises the question as to whether it is possible for cyclic sulfamides to bind symmetrically and conversely for cyclic ureas to bind non-symmetrically. Herein we report an analysis of the conformational preference of cyclic ureas and sulfamides both free in solution and bound to HIV protease, including an investigation of the effect of branching. Quantum chemical calculations (B3LYP, M06-2X, MP2, CCSD(T)) predict the cyclic urea to prefer a symmetric conformation in solution, with a large activation barrier towards inter-conversion to the non-symmetric conformation. This differs from the cyclic sulfamides, which marginally prefer a non-symmetric conformation with a much smaller barrier to inter-conversion making it more likely for a non-preferred conformation to be observed. It is predicted that the cyclic scaffold itself favours a symmetric form, while branching induces a preference for a non-symmetric form. MD simulations on the free inhibitors identified inter-conversion with the cyclic sulfamides but not the cyclic ureas, in support of the quantum chemical results. MM-PB(GB)SA calculations on the cyclic inhibitors bound to HIV protease corroborate the X-ray crystallography studies, identifying the cyclic ureas to bind symmetrically and the cyclic sulfamides in a non-symmetrical manner. While the non-preferred form of the sulfamide may well be present as a free molecule in solution, our results suggest that it is unlikely to bind to HIV protease in a symmetric manner.
Figure
Two classes of cyclic inhibitors of HIV protease have been investigated for conformational preferences, including whether these inhibitors may bind in a non-preferred conformation  相似文献   

15.
16.
Gas-phase reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) have been investigated in detail using the popular DFT functional BHandHLYP/aug-cc-pVDZ level of theory. As a result, our findings strongly suggest that the type of reaction is firstly initiated by a typical SN2 fashion. Subsequently, two competitive substitution steps, named as SN2-induced substitution and SN2-induced elimination, respectively, would proceed before the initial SN2 product ion-dipole complex separates, in which the former exhibits less reactivity than the latter. Those are consistent with relevant experimental results. Moreover, we have also explored reactivity difference for the title reactions in term of some factors derived from methyl group, p-π electronic conjugation, ionization energy (IE), as well as molecular orbital (MO) analysis.
Figure
Energy profiles for the ClO– reactions and BrO–reactions, respectively  相似文献   

17.
A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.
Figure
Metastable sI hydrogen hydrate studied by classical molecular dynamics simulation  相似文献   

18.
Density functional theory (DFT) calculations at B3LYP/6-31 G (d,p) and B3LYP/6-311?+?G(d,p) levels for the substituted pyridine-catalyzed isomerization of monomethyl maleate revealed that isomerization proceeds via four steps, with the rate-limiting step being proton transfer from the substituted pyridinium ion to the C=C double bond in INT1. In addition, it was found that the isomerization rate (maleate to fumarate) is solvent dependent. Polar solvents, such as water, tend to accelerate the isomerization rate, whereas apolar solvents, such as chloroform, act to slow down the reaction. A linear correlation was obtained between the isomerization activation energy and the dielectric constant of the solvent. Furthermore, linearity was achieved when the activation energy was plotted against the pK a value of the catalyst. Substituted-pyridine derivatives with high pK a values were able to catalyze isomerization more efficiently than those with low pK a values. The calculated relative rates for prodrugs 16 were: 1 (406.7), 2 (7.6?×?106), 3 (1.0), 4 (20.7), 5 (13.5) and 6 (2.2?×?103). This result indicates that isomerizations of prodrugs 1 and 35 are expected to be slow and that of prodrugs 2 and 6 are expected to be relatively fast. Hence, prodrugs 2 and 35 have the potential to be utilized as prodrugs for the slow release of monomethylfumarate in the treatment of psoriasis and multiple sclerosis.
Figure
Substituted pyridine-catalyzed isomerization of monomethylmaleate (prodrug, cis-isomer) to monomethylfumerate (parental drug, trans-isomer)  相似文献   

19.
The adsorption of CO onto Ni-doped boron nitride nanotubes (BNNTs) was investigated using density functional theory at the B3LYP/LanL2DZ level of theory. The structures of the Ni-doped BNNTs and their CO-adsorbed configurations were obtained. It was found that the strength of adsorption of CO onto Ni-doped perfect BNNTs is higher than that on defective BNNTs. The electronic properties of all of the adsorption configurations of CO on Ni-doped BNNTs are reported.
Figure
The optimized structures of CO adsorption on Ni-doped BNNTs  相似文献   

20.
The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号