首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The calponin 3 (CNN3) gene has important functions involved in skeletal muscle development. MicroRNAs (miRNAs) play critical role in myogenesis by influencing the mRNA stability or protein translation of target gene. Based on paired microRNA and mRNA profiling in the prenatal skeletal muscle of pigs, our previous study suggested that CNN3 was differentially expressed and a potential target for miR-1. To further understand the biological function and regulation mechanism of CNN3, we performed co-expression analysis of CNN3 and miR-1 in developmental skeletal muscle tissues (16 stages) from Tongcheng (a Chinese domestic breed, obese-type) and Landrace (a Western, lean-type) pigs, respectively. Subsequently, dual luciferase and western blot assays were carried out. During skeletal muscle development, we observe a significantly negative expression correlation between the miR-1 and CNN3 at mRNA level. Our dual luciferase and western blot results suggested that the CNN3 gene was regulated by miR-1. We identified four single nucleotide polymorphisms (SNPs) contained within the CNN3 gene. Association analysis indicated that these CNN3 SNPs are significantly associated with birth weight (BW) and the 21-day weaning weight of the piglets examined. These facts indicate that CNN3 is a candidate gene associated with growth traits and regulated by miR-1 during skeletal muscle development in pigs.  相似文献   

5.
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals.  相似文献   

6.
余梅  蔡伟强  金建平  张庆德  曹建华  李奎 《遗传学报》2003,30(12):1097-1100
以艾维茵鸡和湖北省地方鸡种洪山鸡为实验材料 ,借助特异性识别Tx残基肽的单克隆抗体 6B8,采用Western杂交方法 ,检测Tx TnT异构体在洪山鸡和艾维茵鸡 7个发育时期 (孵化第 14d、初生 1日龄、7、14、2 1、2 8和35日龄 )的胸肌和腿肌中的表达差异 ,并与胸肌重进行相关分析。结果表明 ,Tx TnT在腿肌和孵化第 14d的胸肌中均不表达 ,在初生 1日龄后胸肌中的表达随发育逐步增长 ,统计分析发现 ,Tx TnT在艾维茵鸡和洪山鸡胸肌中的表达量具有显著差异 (P <0 0 5 ) ,与胸肌重具有显著相关 (P <0 0 5 )。  相似文献   

7.
8.
The mRNA differential display technique was performed to investigate the differences of gene expression in the pituitary gland from mini-type Diannan small-ear pigs and large-type Diannan small-ear pigs. One novel gene differentially expressed was identified through semi-quantitative RT-PCR and its cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. Nucleotide sequence of the gene is not homologous to any of the known porcine genes. The sequence analysis revealed that the open reading frame of this gene encodes a protein of 384 amino acids has high homology with the mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) of eight species-cattle (96%), horse (96%), rhesus monkey (93%), rabbit (77%), human (98%), chimpanzee (98%), mouse (94%) and rat (91%)-so that it can be defined as swine MAPKAPK3 gene. This gene was finally assigned GENE ID: 100233192. Computer assisted analysis revealed that the genomic DNA of open reading frame of the swine MAPKAPK3 gene consists of ten exons and nine introns. The phylogenetic tree analysis revealed that the swine MAPKAPK3 gene has a closer genetic relationship with the MAPKAPK3 of cattle. The tissue expression analysis indicated that the MAPKAPK3 mRNA expression levels of large-type Diannan small-ear pigs are ubiquitously increased in various tissues compared to the mini-type Diannan small-ear pigs. Our experiment suggested that the swine MAPKAPK3 gene might play an important role in the growth and development differences between mini-type Diannan small-ear pigs and large-type Diannan small-ear pigs.  相似文献   

9.
It is well known that rapid gain of muscle mass in neonatal pigs is highly related to protein synthesis. However, the role of protein degradation in muscle gain of the neonatal period has not been well established. Calpains and their endogenous inhibitors, calpastatins, play a significant role in early-stage myofibrillar protein degradation. To investigate the role of calpain–calpastatin system in muscle protein accumulation, we studied the expressions of their mRNA in muscle tissue sampled at days 1, 4, 6, 12, 20 and 28 from a total of 36 neonatal pigs. The steady-state mRNA levels of calpains 1A, 2 and 3A, calpastatin types 1, 2 and 3, obtained by quantitative real-time PCR analysis, decreased by 2–4 folds at the age of 4 to 6 days compared to 1-day-old piglets. Then, the relatively low expression level was maintained through 28 days of age. Expressions of calpains 1A, 3A and calpastatin type 1 were significantly correlated with the measurements of muscle protein accumulations such as muscle protein content and RNA/protein ratio. Expressions of calpain 1A, calpastatin types 1 and 3 were negatively correlated with birth weight and fractional rate of growth. The levels of calpains 1A and 2 mRNA were correspondent to their protease activities. In conclusion, decreased levels of calpain and calpastatin expressions over development in neonatal pigs are associated with high protein accumulations, suggesting that dramatic muscle growth during the neonatal period may be partially controlled by down-regulated calpain–calpastatin system.  相似文献   

10.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus dorsi muscle and backfat tissues from Chinese Meishan and Russian Large White pigs. One novel gene that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The cDNA sequence of this gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 402 amino acids that contains the putative conserved transposase DDE domain and further Blast analysis revealed that this protein has 100% homology with the Tn10 transposase from Oryza sativa, Serratia marcescens, and Salmonella, and therefore, this gene can be defined as the swine Tn10 transposase gene. This novel porcine gene was finally assigned to Gene ID: 100049649. The RT-PCR analysis of the tissue expression profile was carried out using the tissue cDNAs of one Meishan pig as the templates, and the result indicated that this novel swine gene is moderately expressed in fat, and weakly expressed in small intestine, liver, kidney, and spleen but almost not expressed in heart, ovary, muscle, and lung. Our experiment established the primary foundation for further research into the biological significance of swine Tn10 transposase gene.  相似文献   

11.
Wang JY  Lan J  Zhao J  Chen L  Liu Y 《Cytokine》2012,59(1):22-26
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Wujin and Large White pigs. One novel gene differentially expressed was identified through quantitative real time PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 507 amino acids that shares high homology with the protection of telomeres 1 isoform 4 (POT1) of human (86%)-so that this gene can be defined as swine POT1 gene. This gene is structured in 12 exons and 11 introns as revealed by computer-assisted analysis. The tissue expression analysis indicated that the swine POT1 gene is differentially expressed in tissues including muscle, heart, liver, fat, kidney, lung, pancreas and spleen. Our experiment is the first to establish the primary foundation for further research on the swine POT1 gene.  相似文献   

12.
Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein characterized by the presence of a single centrally located lin-11, isl-1, and mec-3 (LIM) domain. We have reported previously that EPLIN is down-regulated in transformed cells. In this study, we have investigated whether ectopic expression of EPLIN affects transformation. In untransformed NIH3T3 cells, retroviral-mediated transduction of EPLIN did not alter the cell morphology or growth. NIH3T3 cells expressing EPLIN, however, failed to form colonies when transformed by the activated Cdc42 or the chimeric nuclear oncogene EWS/Fli-1. This suppression of anchorage-independent growth was not universal because EPLIN failed to inhibit the colony formation of Ras-transformed cells. Interestingly, the localization of EPLIN to the actin cytoskeleton was maintained in the EWS/Fli-1- or Cdc42-transformed cells, but not in Ras-transformed cells where it was distributed heterogeneously in the cytoplasm. Using truncated EPLIN constructs, we demonstrated that the NH(2)-terminal region of EPLIN is necessary for both the localization of EPLIN to the actin cytoskeleton and suppression of anchorage-independent growth of EWS/Fli-1-transformed cells. The LIM domain or the COOH-terminal region of EPLIN could be deleted without affecting its cytoskeletal localization or ability to suppress anchorage-dependent growth. Our study indicates EPLIN may function in growth control by associating with and regulating the actin cytoskeleton.  相似文献   

13.
Huang TH  Zhu MJ  Li XY  Zhao SH 《PloS one》2008,3(9):e3225
MiRNAs (microRNAs) play critical roles in many important biological processes such as growth and development in mammals. In this study, we identified hundreds of porcine miRNA candidates through in silico prediction and analyzed their expression in developing skeletal muscle using microarray. Microarray screening using RNA samples prepared from a 33-day whole embryo and an extra embryo membrane validated 296 of the predicted candidates. Comparative expression profiling across samples of longissimus muscle collected from 33-day and 65-day post-gestation fetuses, as well as adult pigs, identified 140 differentially expressed miRNAs amongst the age groups investigated. The differentially expressed miRNAs showed seven distinctive types of expression patterns, suggesting possible involvement in certain biological processes. Five of the differentially expressed miRNAs were validated using real-time PCR. In silico analysis of the miRNA-mRNA interaction sites suggested that the potential mRNA targets of the differentially expressed miRNAs may play important roles in muscle growth and development.  相似文献   

14.
EPLIN regulates actin dynamics by cross-linking and stabilizing filaments   总被引:2,自引:0,他引:2  
Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundles. EPLIN does not affect the kinetics of spontaneous actin polymerization or elongation at the barbed end, but inhibits branching nucleation of actin filaments by Arp2/3 complex. Side binding activity may stabilize filaments and account for the inhibition of nucleation mediated by Arp2/3 complex. We propose that EPLIN promotes the formation of stable actin filament structures such as stress fibers at the expense of more dynamic actin filament structures such as membrane ruffles. Reduced expression of EPLIN may contribute to the motility of invasive tumor cells.  相似文献   

15.
In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.  相似文献   

16.
17.
18.
Fascin homologue 1 (FSCN1) has established roles in cell adhesion, motility, and cell–cell interactions. Our LongSAGE analysis suggested that FSCN1 was potentially differentially expressed in prenatal pig skeletal muscle. We have cloned the genomic DNA and mRNA sequence of FSCN1 gene and mapped it to SSC3p16-p17. The FSCN1 gene was differently expressed during prenatal skeletal muscle development and exhibited different expression pattern between Tongcheng and Landrace pigs. In Tongcheng pigs, FSCN1 expression was similar at 33 and 65 days post conception (dpc), and then sharply increased to a peak at 90 dpc. In Landrace pigs, however, expression increased between 33 and 65 dpc, peaked at 65 dpc, and was down-regulated thereafter. Significantly different expression levels between Tongcheng and Landrace were observed at 65 and 90 dpc. In postnatal pigs, it was strongly expressed only in the brain, but weakly in skeletal muscle and other tissues. We initially identified 32 SNPs through genomic DNA of FSCN1 gene. Association analysis suggested that the 6840C/T mutation was significantly associated with the age at market weight (AGE) (p = 0.0004), average day gain from birth to market (ADG1) (p = 0.0002), and average day gain at testing period (ADG2) (p < 0.0001). Our study suggested that FSCN1 gene plays an in prenatal skeletal muscle development and was a candidate gene for meat production trait.  相似文献   

19.
20.
The hormone-sensitive and lipoprotein lipases are critical determinants of the metabolic adaptation to starvation. Additionally, the uncoupling proteins have emerged with potential roles in the metabolic adaptations required by energy deficiency. The objective of this study was to evaluate the expression (mRNA abundance) of uncoupling proteins 2 and 3 and that of hormone-sensitive and lipoprotein lipase in the adipose tissue and skeletal muscle of the pig in relationship to feed deprivation. Thirty-two male castrates (87 kg +/- 5%) were assigned at random to fed and feed-deprived treatment groups. After 96 hr, the pigs were euthanized and adipose and skeletal muscle tissue obtained for total RNA extraction and nuclease protection assays. Feed deprivation increased uncoupling protein 3 mRNA abundance 103-237% (P < 0.01) in longissimus and red and white semitendinosus muscle. In contrast, the increase in uncoupling protein 3 mRNA in adipose tissue was only 23% (P < 0.06), and adipose uncoupling protein 2 mRNA was not influenced (P > 0.66) by feed deprivation. The increased abundance of uncoupling protein 2 mRNA in the longissimus muscle of feed-deprived pigs was small (22%), but significant (P < 0.04). The expression of hormone-sensitive lipase was increased 46% and 64% (P < 0.04) in adipose tissue and longissimus muscle, respectively, by feed deprivation, whereas adipose lipoprotein lipase expression was reduced (P < 0.01) to 20% of that of the fed group. Longissimus lipoprotein lipase expression in the feed-deprived group was 37% of that of the fed group (P < 0.01), and similar reductions were detected in red and white semitendinosus muscle. Overall, these findings indicate that uncoupling protein 3 expression in skeletal muscle is quite sensitive to starvation in the pig, whereas uncoupling protein 2 changes are minimal. Furthermore, we conclude that hormone-sensitive lipase is upregulated at the mRNA level with prolonged feed deprivation, whereas lipoprotein lipase is downregulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号