首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study is to detect quantitative trait loci (QTL) for carcass traits applicable for a DNA-based breeding system in a Japanese Black cattle population. A purebred paternal half-sib family from a commercial line composed of 65 steers was initially analyzed using 188 informative microsatellites giving a 16-cM average interval covering 29 autosomes. A significant QTL for marbling was detected in the centromeric portion of bovine chromosome (BTA) 9. After additional marker genotyping across a larger sample size composed of 169 individuals, this locus was refined to a 20-cM confidence interval between microsatellites BM1227 (24 cM) and DIK2741 (50 cM) at a 1% chromosome-wise threshold. The allele substitution effect between Q and q for a beef marbling standard score (1 to 12 range) on BTA9 was 1.0 (5.7% of total phenotypic variance in QTL contribution in this family). This result provides a primary platform for a marker-assisted selection system of the beef marbling trait within the Japanese Black (Wagyu) cattle population.  相似文献   

2.
QTL mapping for growth and carcass traits was performed using a paternal half-sib family composed of 325 Japanese Black cattle offspring. Nine QTL were detected at the 1% chromosome-wise significance level at a false discovery rate of less than 0.1. These included two QTL for marbling on BTA 4 and 18, two QTL for carcass weight on BTA 14 and 24, two QTL for longissimus muscle area on BTA 1 and 4, two QTL for subcutaneous fat thickness on BTA 1 and 15 and one QTL for rib thickness on BTA 6. Although the marbling QTL on BTA 4 has been replicated with significant linkages in two Japanese Black cattle sires, the three Q (more marbling) haplotypes, each inherited maternally, were apparently different. To compare the three Q haplotypes in more detail, high-density microsatellite markers for the overlapping regions were developed within the 95% CIs (65 markers in 44–78 cM). A detailed haplotype comparison indicated that a small region (<3.7 Mb) around 46 cM was shared between the Qs of the two sires, whose dams were related. An association of this region with marbling was shown by a regression analysis using the local population, in which the two sires were produced and this was confirmed by an association study using a population collected throughout Japan. These results strongly suggest that the marbling QTL on BTA 4 is located in the 3.7-Mb region at around 46 cM.  相似文献   

3.
To detect quantitative trait loci (QTL) that influence economically important traits in a purebred Japanese Black cattle population, we performed a preliminary genome-wide scan using 187 microsatellite markers across a paternal half-sib family composed of 258 offspring. We located six QTL at the 1% chromosome-wise level on bovine chromosomes (BTA) 4, 6, 13, 14 and 21. A second screen of these six QTL regions using 138 additional paternal offspring half-sib from the same sire, provided further support for five QTL: carcass weight on BTA14 (22-39 cM), one for rib thickness on BTA6 (27-58 cM) and three for beef marbling score (BMS) on BTA4 (59-67 cM), BTA6 (68-89 cM) and BTA21 (75-84 cM). The location of QTL for subcutaneous fat thickness on BTA13 was not supported by the second screen (P > 0.05). We determined that the combined contribution of the three QTLs for BMS was 10.1% of the total variance. The combined phenotypic average of these three Q was significantly different (P < 0.001) from those of other allele combinations. Analysis of additional half-sib families will be necessary to confirm these QTL.  相似文献   

4.
To locate quantitative trait loci (QTL) for intramuscular fat deposition (marbling) in a local population of Japanese Black cattle, we performed a genome scan using a paternal half-sib family of Bull A. A marbling QTL was mapped in the region flanked by DIK0079 (20.7 cM) and TGLA303 (39.3 cM) on bovine chromosome (BTA) 7, affecting 5.0% of the total family variance. Haplotype analysis of the QTL region revealed that the marbling-increasing Q allele was transmitted from the dam. On the other hand, Bull B, a maternal half-sib of Bull A, did not receive the Q allele from its dam, based on the following findings: (i) a marbling QTL on BTA7 was not detected in the Bull B paternal half-sib family; (ii) recombination between DIK0079 (20.7 cM) and RM006 (25.4 cM) in the QTL region was observed in the maternal chromosome of Bull B; and (iii) the Q -harbouring steers from Bull A exhibited significantly higher marbling than the steers from Bull B and the remaining steers from Bull A. To precisely compare the maternal chromosomes of both bulls, we constructed a bacterial artificial chromosome contig covering the region between DIK0079 and RM006 and developed DNA markers. The recombination occurred between DIK8042 and DIK8044 , indicating that the marbling QTL was in a 2.9-cM region flanked by DIK0079 and DIK8044 .  相似文献   

5.
To map quantitative trait loci (QTL) for growth and carcass traits in a purebred Japanese Black cattle population, we conducted multiple QTL analyses using 15 paternal half-sib families comprising 7860 offspring. We identified 40 QTL with significant linkages at false discovery rates of less than 0.1, which included 12 for intramuscular fat deposition called marbling and 12 for cold carcass weight or body weight. The QTL each explained 2%–13% of the phenotypic variance. These QTL included many replications and shared hypothetical identical-by-descent (IBD) alleles. The QTL for CW on BTA14 was replicated in five families with significant linkages and in two families with a 1% chromosome-wise significance level. The seven sires shared a 1.1-Mb superior Q haplotype as a hypothetical IBD allele that corresponds to the critical region previously refined by linkage disequilibrium mapping. The QTL for marbling on BTA4 was replicated in two families with significant linkages. The QTL for marbling on BTA6, 7, 9, 10, 20, and 21 and the QTL for body weight on BTA6 were replicated with 1% and/or 5% chromosome-wise significance levels. There were shared IBD Q or q haplotypes in the marbling QTL on BTA4, 6, and 10. The allele substitution effect of these haplotypes ranged from 0.7 to 1.2, and an additive effect between the marbling QTL on BTA6 and 10 was observed in the family examined. The abundant and replicated QTL information will enhance the opportunities for positional cloning of causative genes for the quantitative traits and efficient breeding using marker-assisted selection. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

7.
The behaviour of beef cattle is important for the safety and welfare of stockmen and animals. Ten microsatellites spanning BTA29 and, in addition, the candidate gene, dopamine receptor D4 gene, were analysed in 545 German Angus calves of six sires and included in a quantitative trait locus (QTL) study on the basis of three different behaviour tests. A putative QTL for the score while entering the scale (ScE) was detected at BMS764. The DRD4 fragment was mapped in the distal region of BTA29 15.3 cM distal of ILSTS081. The results clearly indicate that BTA29 with a putative QTL in the proximal part and the candidate gene, DRD4, in the distal part plays an important role in the regulation of temperament. During the study one of the sires was detected to be a blood chimera.  相似文献   

8.
Increased twinning incidence in beef cattle has the potential to improve production efficiency. However, phenotypic selection for twinning rate is difficult because of the trait's low heritability and the long time interval necessary to collect phenotypic records. Therefore, this trait and the correlated trait of ovulation rate are ideal candidates for marker-assisted selection. The objective of this study was to complete a genome-wide search for ovulation rate quantitative trait loci (QTL) in two related sire families. The families (paternal halfsib sires 839802 and 839803) were from a population of cattle selected for ovulation rate at the USDA Meat Animal Research Center, Clay Center, Nebraska. Putative ovulation rate QTL have previously been identified in the 839802 family on chromosomes 7 and 19; however, marker coverage in the original scan was not complete. This study fills the gaps in marker coverage of the earlier study by adding approximately 60 informative microsatellites to each sire family. Each family was genotyped using selective DNA pooling. Sons and daughters were included in either the high or low pool based on their estimated breeding value deviations from the mid-parent average (EBVMD) for ovulation rate. Approximately 40% (839802) and 26% (839803) of available progeny comprised the high and low pools combined. Pooled typing revealed possible associations (nominal P < 0.05) between ovulation rate and marker genotype for 11 and 15 microsatellites in the 839802 and 839803 families, respectively. Subsequent interval mapping strengthened support for the presence of an ovulation rate QTL on BTA14 (chromosome-wise P < 0.02).  相似文献   

9.
Marbling defined by the amount and distribution of intramuscular fat, so-called Shimofuri , is an economically important trait of beef cattle in Japan. The endothelial differentiation sphingolipid G-protein-coupled receptor 1 ( EDG1 ) gene, involved in blood vessel formation, has been previously shown to be expressed at different levels in musculus longissimus muscle between low-marbled and high-marbled steer groups. It is located within the genomic region of a quantitative trait locus for marbling, and thus was considered as a positionally functional candidate for the gene responsible for marbling. In this study, two single nucleotide polymorphisms (SNPs) in the 5' untranslated region (UTR) and the 3' UTR of EDG1 , referred to as c. - 312A>G and c.*446G>A , respectively, were detected between the two steer groups. The two SNPs were associated with the predicted breeding value for beef marbling standard number by analyses using a population of Japanese Black beef cattle. The effect of genotypes at each of the SNPs on the predicted breeding value for subcutaneous fat thickness was not statistically significant ( P  >   0.05). Reporter gene assays revealed no significant differences in gene expression between alleles at each of the SNPs. These findings suggest that EDG1 SNPs, although they may not be regarded as a causal mutation, may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle.  相似文献   

10.
A second-generation linkage map of the sheep genome   总被引:32,自引:0,他引:32  
A genetic map of Ovis aries (haploid n = 27) was developed with 519 markers (504 microsatellites) spanning ∼3063 cM in 26 autosomal linkage groups and 127 cM (female specific) of the X Chromosome (Chr). Genotypic data were merged from the IMF flock (Crawford et al., Genetics 140, 703, 1995) and the USDA mapping flock. Seventy-three percent (370/504) of the microsatellite markers on the map are common to the USDA-ARS MARC cattle linkage map, with 27 of the common markers derived from sheep. The number of common markers per homologous linkage group ranges from 5 to 22 and spans a total of 2866 cM (sex average) in sheep and 2817 cM in cattle. Marker order within a linkage group was consistent between the two species with limited exceptions. The reported translocation between the telomeric end of bovine Chr 9 (BTA 9) and BTA 14 to form ovine Chr 9 is represented by a 15-cM region containing 5 common markers. The significant genomic conservation of marker order will allow use of linkage maps in both species to facilitate the search for quantitative trait loci (QTLs) in cattle and sheep. Received: 20 September 1992 / Accepted: 18 November 1997  相似文献   

11.
Genome screening of quantitative trait loci (QTL) for a complex trait is usually costly and highly laborious, as it requires a large number of markers spanning the whole genome. Here we present a simplified approach for screening and mapping of QTL-linked markers for beef marbling using a WagyuxLimousin F(2) reference population. This simplified approach involves integration of the amplified fragment length polymorphism (AFLP) with DNA pooling and selective genotyping and comparative bioinformatics tools. AFLP analysis on two high and two low marbling DNA pools yielded ten visually different markers. Among them, four were confirmed based on individual AFLP validation. Sequencing and in silico characterization assigned two of these AFLP markers to bovine chromosomes 1 (BTA1) and 13 (BTA13), which are orthologous to human chromosomes HSA21q22.2 and HSA10p11.23 with both regions harboring QTL for obesity-related phenotypes. Both AFLP markers showed significantly large additive genetic effects (0.28+/-0.11 on BTA1 and 0.54+/-0.21 on BTA13) on beef-marbling score (BMS) (P<0.05). Overall, this approach is less time consuming, inexpensive and in particular, suitable for screening and mapping QTL-linked markers when targeting one or a few complex traits.  相似文献   

12.
We previously mapped a locus for porcine intramuscular fat content (IMF) by linkage analysis to a 17.1-cM chromosome interval on Sus scrofa chromosome 7 (SSC7) flanked by microsatellite markers SW1083 and SW581. In this study, we identified 34 microsatellite markers and 14 STSs from the 17.1-cM IMF quantitative trait loci (QTL) region corresponding to HSA14q and aligned those loci using the INRA-University of Minnesota porcine radiation hybrid (IMpRH) panel. We then constructed a 5.2-Mb porcine bacterial artificial chromosome (BAC) contig of this region that was aligned using the RH panel. Finally, the IMF QTL was fine-mapped to 12.6 cM between SJ169 and MM70 at the 0.1% chromosome-wise significance level by genotyping the previously studied F2 resource family with 17 additional microsatellites. We also demonstrated that the SJ169-MM70 interval spans approximately 3.0 Mb and contains at least 12 genes: GALC, GPR65, KCNK10, SPATA7, PTPN21, FLJ11806, EML5, TTC8, CHES1, CAP2P1, CHORDC2P and C14orf143.  相似文献   

13.
A vision-impairing ocular disorder was observed in a local Japanese Black cattle population, and assumed to be an autosomal recessive disease based on the presence of a founder cow. A genome scan using seven affected half-sib pairs revealed a linkage to BTA5 (Z(max) = 7.0, LOD(max) = 2.0), designated the bovine ocular disorder 1 (bod1) locus. Of the seven animals, three were heterozygous at the bod1 locus. Analysis in these three animals revealed linkage to markers on BTA18, and this locus was designated bod2. Detailed haplotype inspection of 16 affected animals indicated linkage to BTA5 in 12 animals, BTA18 in three animals, and linkage to both BTA5 and BTA18 in one animal. The bod1 locus was mapped to a 25 cM interval between DIK5237 and DIK5210 on BTA5 (Z(max) = 17.0, LOD(max) = 11.8), and bod2 was mapped to a 7 cM interval between DIK5411 and INRA038 on BTA18 (Z(max) = 13.0, LOD(max) = 4.0). This study demonstrated that the independent involvement of loss of function mutations in two loci is likely responsible for this genetic heterogeneity.  相似文献   

14.
We report on a complete genome scan for quantitative trait loci (QTL) affecting milk protein percentage (PP) in the Italian Holstein-Friesian cattle population, applying a selective DNA pooling strategy in a daughter design. Ten Holstein-Friesian sires were chosen, and for each sire, about 200 daughters, each from the high and low tails of estimated breeding value for PP, were used to construct milk DNA pools. Sires and pools were genotyped for 181 dinucleotide microsatellites covering all cattle autosomes. Sire marker allele frequencies in the pools were obtained by shadow correction of peak height in the electropherograms. After quality control, pool data from eight sires were used for all subsequent analyses. The QTL heterozygosity estimate was lower than that of similar studies in other cattle populations. Multiple marker mapping identified 19 QTL located on 14 chromosomes (BTA1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 23 and 27). The sires were also genotyped for seven polymorphic sites in six candidate genes (ABCG2, SPP1, casein kappa, DGAT1, GHR and PRLR) located within QTL regions of BTA6, 14 and 20 found in this study. The results confirmed or excluded the involvement of some of the analysed markers as the causative polymorphic sites of the identified QTL. The QTL identified, combined with genotype data of these candidate genes, will help to identify other quantitative trait genes and clarify the complex QTL patterns observed for a few chromosomes. Overall, the results are consistent with the Italian Holstein population having been under long-term selection for high PP.  相似文献   

15.
Meng H  Garrett MR  Dene H  Rapp JP 《Genomics》2003,81(2):210-220
A blood pressure (BP) quantitative trait locus (QTL) was previously found on rat chromosome 9 using Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats. A congenic strain, S.R(chr9), constructed by introgressing an R chromosomal segment into the S background, previously proved the existence of a BP QTL in a large 34.2-cM segment of chromosome 9. In the current work congenic substrains were constructed from the progenitor congenic strain, S.R(chr9). BP and heart weight comparisons between these congenic substrains and their S control localized the BP QTL to a 4.6-cM interval. Two solute carrier (Na(+)/H(+) exchanger) genes, Nhe2 and Nhe4, were excluded as candidates based on their map locations. A second iteration of congenic substrains was used to localize the QTL further to a 2.4-cM interval. Another solute carrier (Cl(-)/HCO3- exchanger) gene, Ae3, is in this reduced interval and was sequenced for both S and R strains, but no coding sequence variations were found. Ae3 mRNA was not differentially expressed in the kidney of congenic compared to S rats. Although the identity of the QTL remains unknown its map location has been reduced from an interval of 34.2 to 2.4 cM.  相似文献   

16.
Days open (DO), which is the interval from calving to conception, is an important trait related to reproductive performance in cattle. To identify quantitative trait loci for DO in Japanese Black cattle, we conducted a genome‐wide association study with 33 303 single nucleotide polymorphisms (SNPs) using 459 animals with extreme DO values selected from a larger group of 15 488 animals. We identified a SNP on bovine chromosome 2 (BTA2) that was associated with DO. After imputation using phased haplotype data inferred from 586 812 SNPs of 1041 Japanese Black cattle, six SNPs associated with DO were located in an 8.5‐kb region of high linkage disequilibrium on BTA2. These SNPs were located on the telomeric side at a distance of 177 kb from the parathyroid hormone 2 receptor (PTH2R) gene. The association was replicated in a sample of 1778 animals. In the replicated population, the frequency of the reduced‐DO allele (Q) was 0.63, and it accounted for 1.72% of the total genetic variance. The effect of a Q‐to‐q allele substitution on DO was a decrease of 3.74 days. The results suggest that the Q allele could serve as a marker in Japanese Black cattle to select animals with superior DO performance.  相似文献   

17.
The objective of this study was to perform a whole genome scan to detect quantitative trait loci (QTL) for milk protein composition in 849 Holstein–Friesian cows originating from seven sires. One morning milk sample was analysed for the major milk proteins using capillary zone electrophoresis. A genetic map was constructed with 1341 single nucleotide polymorphisms, covering 2829 centimorgans (cM) and 95% of the cattle genome. The chromosomal regions most significantly related to milk protein composition ( P genome < 0.05) were found on Bos taurus autosomes (BTA) 6, 11 and 14. The QTL on BTA6 was found at about 80 cM, and affected αS1-casein, αS2-casein, β-casein and κ-casein. The QTL on BTA11 was found at 124 cM, and affected β-lactoglobulin, and the QTL on BTA14 was found at 0 cM, and affected protein percentage. The proportion of phenotypic variance explained by the QTL was 3.6% for β-casein and 7.9% for κ-casein on BTA6, 28.3% for β-lactoglobulin on BTA11, and 8.6% for protein percentage on BTA14. The QTL affecting αS2-casein on BTA6 and 17 showed a significant interaction. We investigated the extent to which the detected QTL affecting milk protein composition could be explained by known polymorphisms in β-casein , κ -casein , β-lactoglobulin and DGAT1 genes. Correction for these polymorphisms decreased the proportion of phenotypic variance explained by the QTL previously found on BTA6, 11 and 14. Thus, several significant QTL affecting milk protein composition were found, of which some QTL could partially be explained by polymorphisms in milk protein genes.  相似文献   

18.
A genomic screening to detect quantitative trait loci (QTL) affecting growth, carcass composition and meat quality traits was pursued. Two hundred nineteen microsatellite markers were genotyped on 176 of 620 (28%) progeny from a Brahman x Angus sire mated to mostly MARC III dams. Selective genotyping, based on retail product yield (%) and fat yield (%), was used to select individuals to be genotyped. Traits included in the study were birth weight (kg), hot carcass weight (kg), retail product yield, fat yield, marbling score (400 = slight00 and 500 = small00), USDA yield grade, and estimated kidney, heart and pelvic fat (%). The QTL were classified as significant when the expected number of false positives (ENFP) was less than 0.05 (F-statistic greater than 17.3), and suggestive when the ENFP was <1 (F-statistic between 10.2 and 17.3). A significant QTL (F = 19; ENFP = 0.02) was detected for marbling score at centimorgan (cM) 54 on chromosome 2. Suggestive QTL were detected for fat yield at 50 cM, for retail product yield at 53 cM, and for USDA yield grade at 63 cM on chromosome 1, for marbling score at 56 cM, for retail product yield at 70 cM, and for estimated kidney, heart and pelvic fat at 79 cM on chromosome 3, for marbling score at 44 cM, for hot carcass weight at 49 cM, and for estimated kidney, heart and pelvic fat at 62 cM on chromosome 16, and for fat yield at 35 cM on chromosome 17. Two suggestive QTL for birth weight were identified, one at 12 cM on chromosome 20 and the other at 56 cM on chromosome 21. An additional suggestive QTL was detected for retail product yield, for fat yield, and for USDA yield grade at 26 cM on chromosome 26. Results presented here represent the initial search for quantitative trait loci in this family. Validation of detected QTL in other populations will be necessary.  相似文献   

19.
Genome-wide scans have mapped economically important quantitative trait loci (QTL) for mastitis susceptibility in dairy cattle at the telomeric end of bovine chromosome 18 (BTA18). In order to increase the density of markers in this chromosomal region and to improve breakpoint resolution in the human-bovine comparative map, this study describes the chromosomal assignment of seven newly developed gene-associated markers and five microsatellites and eight previously mapped sequence tagged site markers near these QTL. The orientation of KCNJ14, BAX, CD37, NKG7, LIM2, PRKCG, TNNT1, MGC2705, RPL28, EPN1, ZNF582, ZIM2, STK13, ZNF132 and SLC27A5 on the 3000-rad radiation hybrid (RH) map of BTA18 is homologous to the organization found on the corresponding 10 Mbp of human chromosome 19q (HSA19q). The resulting bovine RH map with a length of 20.9 cR spans over about 11 cM on the bovine linkage map. The location of KCNJ14 and SLC27A5 flanking the RH map on BTA18q25-26 has been confirmed by fluorescence in situ hybridization. The data of this refined human-bovine comparative map should improve selection of candidate genes for mastitis susceptibility in dairy cattle.  相似文献   

20.
Canchim is a composite cattle breed developed in Brazil for beef production. One of the breeding objectives is to increase fat deposition. QTLs for fat thickness and/or marbling have been reported on BTA4 and BTA14. The IGFBP3 and DDEF1 genes, mapped to BTA4 and BTA14, respectively, affect adipogenesis. We looked for SNPs in the IGFBP3 and DDEF1 genes that could be associated with backfat thickness in Canchim beef cattle. For SNP identification, sires with the highest accuracy were ranked according to expected breeding value for fat thickness; the 12 extremes (six sires with the highest and six with the lowest expected breeding value for the trait) were chosen. Six regions of the IGFBP3 and 14 regions of the DDEF1 were sequenced using the Sanger method. Nine SNPs were identified in IGFBP3 and 76 in the DDEF1. After an initial analysis, two SNPs were selected to be genotyped for the whole population; these were DDEF1g.279401A>G and IGFBP3c.4394T>C(Trp>Arg). We found a significant effect (P ≤ 0.05) of allele substitution on backfat thickness; however, the IGFBP3 SNP did not significantly affect this trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号