首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红外热成像仪是一种非接触、无损伤性的温度测量仪,它可通过接收被测物体表面的热辐射形成热谱图,对研究对象进行定性观察或定量分析。热成像仪在野生动物调查和实验研究等领域均有应用。我们于2015年4~8月的鸟类繁殖季,使用手持便携式红外热成像仪,对贵州宽阔水国家级自然保护区内4种生境的鸟巢进行系统搜索。共找到鸟巢54个,其中7巢可在红外热成像仪中清晰显示。使用红外热成像仪搜寻鸟巢的成功率为13.0%(7/54)。其中,搜寻地面巢的成功率最大(27.3%,3/11),树上巢的成功率最低(0%,0/5)。在热谱图中所显示的巢,其植被郁闭度显著小于红外热成像仪搜寻不到的巢(t=2.837,df=16,P0.01);而其温差则显著大于红外热成像仪搜寻不到的巢(t=﹣2.476,df=19,P0.05)。这表明,使用红外热成像仪搜寻鸟巢主要受巢上植被郁闭度及巢周围环境温度的影响。巢上植被郁闭度越小,与周围环境的温差越大,则搜寻成功率越高。  相似文献   

2.
BackgroundThe quality of intestinal blood supply is extremely important for healing of intestinal anastomoses. During the surgery the blood supply of the intestine may appear sufficient even though the microperfusion is not fully adequate. The degree of blood supply of remaining intestinal segment and the positioning of the resection margins is estimated subjectively by the surgeon's experience or objectively by means of indocyanine green fluorescence imaging. The subject of our study is the evaluation of the infrared thermal imaging as another supportive non-invasive imaging method in assessment of intestinal blood supply, and to compare surgeon's decisions of the position of resection line with information obtained by infrared thermal imaging and by indocyanine green fluorescence imaging.MethodsA pilot study on thermal imaging measurements was done in a porcine model. The infrared thermocamera Workswell WIC 640 was used in our study. The thermal imaging was correlated with the indocyanine green imaging method ICG NOVADAQ and with surgeon's subjective expert decisions of the places of resection lines. Fifteen monitored resections were performed on three experimental porcine models.ResultsBased on the data evaluated, experience of the surgical team and the post-operative conditions of the porcine models, we conclude that the thermal imaging is a useful tool for determination of the optimal intestinal resection margins, and thus contributes to lowering anastomotic complications rate in colorectal surgery. The results show relatively high consistency between the used imaging techniques. Both methods showed ischemic regions of the intestine at a comparable level. The IRT methods showed even a slightly higher match with the surgeon's rating.ConclusionBased on experiments, the infrared thermography can be considered as one of complementary imaging methods suitable for use during anastomosis surgery. The sensitivity and versatility of the infrared thermography method was demonstrated. There was confirmed agreement in obtained information about the position of area with maximal blood insufficiency obtained by IRT with the information obtained by using the ICG method.  相似文献   

3.
Breast cancer is the most common cancer among women. Thermography, also known as thermal or infrared imaging, is a procedure to determine if an abnormality is present in the breast tissue temperature distribution. This abnormality in temperature distribution might indicate the presence of an embedded tumor. Although thermography is currently used to indicate the presence of an abnormality, there are no standard procedures to interpret these and determine the location of an embedded tumor. This research is a first step towards this direction. It explores the relationship between the characteristics (location and power) of an embedded heat source and the resulting temperature distribution on the surface. Experiments were conducted using a resistance heater that was embedded in agar in order to simulate the heat produced by a tumor in the biological tissue. The resulting temperature distribution on the surface was imaged using an infrared camera. In order to estimate the location and heat generation rate of the source from these temperature distributions, a genetic algorithm was used as the estimation method. The genetic algorithm utilizes a finite difference scheme for the direct solution of the Pennes bioheat equation. It was determined that a genetic algorithm based approach is well suited for the estimation problem since both the depth and the heat generation rate of the heat source were accurately predicted.  相似文献   

4.
Thermography is a non-destructive method used to monitor pest and disease infestations, as it is related to changes in plant water status. Surface temperature differences of the crop canopy may be an indicator of nematode infestation as the parasitation of the root system reduces evaporation of leaves. To test the potential of high resolution digital thermography to detect Heterodera schachtii infestation, experiments using increasing nematode densities and different sugar beet varieties were conducted. From June to August 2003 the crop canopy temperature was measured with a thermal infrared camera from a helicopter. A significant correlation between canopy temperature and nematode density was observed with the susceptible cultivar Monza whereas the resistant cultivar Paulina did not show any correlation. Mean temperature comparison showed significant differences between the lowest infestation level (500 eggs and larvae/100 ml soil) and the highest infestation level (>1500 eggs and larvae/100 ml soil). At the beginning of the season canopy temperature differences between healthy and nematode infested sugar beets were higher (approximately 1 degree C) compared to later assessment dates when the water supply in the soil was limited. Since low and high nematode infestation could be clearly distinguished with the susceptible cultivar by airborne thermal images, thermography might be a useful tool for monitoring sugar beet fields.  相似文献   

5.
Thermography has been used in many fields to perform non-invasive temperature measurements of natural objects. In this paper, thermography was used to determine the temperature of leaves, stems and branch kerfs of Japanese spindle (Euonymus japonicus Thunb.) and glossy privet (Ligustrum lucidum Ait.) in the city of Jinan in China during winter. The temperatures of the leaves, stems and branch kerfs were monitored as the temperature decreased after the sample was subjected to hand heating or after the branch was cut. Differences in the specific heats and the latent heats of the leaves, branches and stems with different water contents and transpiration capacities were confirmed. The significant temperature difference obtained after hand heating between different leaf sections with varied water contents made it easy to obtain the thermal images, which were clear and exhibited reduced systematic errors. After hand heating, a significantly higher temperature was found at the major vein system of both Japanese spindle and glossy privet. This increased temperature difference made it possible to detect the water and the thermal state of these leaves. Therefore, it was possible to detect scorched area of the leaves, the twig dieback and the sap warming phenomenon in the leaves using thermography. In addition, the leaf bending phenomenon observed in Japanese spindle leaves during the deep freezing process indicates that the leaf scorch symptoms result from water stress and a lack of sap warming.  相似文献   

6.
Infrared thermal imaging is a passive imaging technique that captures the emitted radiation from an object to estimate surface temperature, often for inference of heat transfer. Infrared thermal imaging offers the potential to detect movement without the challenges of glare, shadows, or changes in lighting associated with visual digital imaging or active infrared imaging. In this paper, we employ a frame subtraction algorithm for extracting the pixel-by-pixel relative change in signal from a fixed focus video file, tailored for use with thermal imaging videos. By summing the absolute differences across an entire video, we are able to assign quantitative activity assessments to thermal imaging data for comparison with simultaneous recordings of metabolic rates. We tested the accuracy and limits of this approach by analyzing movement of a metronome and provide an example application of the approach to a study of Darwin's finches. In principle, this “Difference Imaging Thermography” (DIT) would allow for activity data to be standardized to energetic measurements and could be applied to any radiometric imaging system.  相似文献   

7.

Background  

The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques.  相似文献   

8.
Thermal imaging, or infrared thermography, has been used in avian science since the 1960s. More than 30 species of birds, ranging in size from passerines to ratites, have been studied using this technology. The main strength of this technique is that it is a non‐invasive and non‐contact method of measuring surface temperature. Its limitations and measurement errors are well understood and suitable protocols have been developed for a variety of experimental settings. Thermal imaging has been used most successfully for research on the thermal physiology of captive species, including poultry. In comparison with work on mammals, thermal imaging has been less used for population counts, other than for some large bird species. However, more recently it has shown greater success for detection of flight paths and migration. The increasing availability and reduced cost of thermal imaging systems is likely to lead to further application of this technology in studies of avian welfare, disease monitoring, energetics, behaviour and population monitoring.  相似文献   

9.
We present applications of infrared thermograph to the direct observation of water transport in stems of woody species. Presently, the method gives only qualitative information on the path of sap movement along the stem, and therefore, does not replace any of the common quantitative methods of sap flow measurement. Nevertheless, the thermal imaging technique provides a novel approach to the study of the ascent of sap and could have a role in supporting more quantitative methods. Thermography permits visualization of the thermal variations of a fairly large area of the stem in real time, and hence, is well suited for spatial analysis of sap movement. Three experiments were carried out during the summers of 1991 and 1992, with the following objectives: to define the sap flow distribution in the active annual rings; to identify grain anomalies in the sap wood; and to study the consequences of induced embolism on the path of sap flow. Altogether, we tested more than 10 woody species (broad-leaves and conifers) either in natural conditions or in the nursery. We found considerable differences in the spatial distribution of sap flow not only between species and individuals but also within a single tree. Grain anomalies or embolized zones in the xylem, which are easily demonstrated, often further modify the path of sap flow. The irregularity of sapwood dimensions and of sap flow among tree rings requires careful evaluation of the positioning of the probes when using methods for quantitative measurements.  相似文献   

10.
Gene Expression and Signal Transduction in Water-Stress Response   总被引:57,自引:0,他引:57       下载免费PDF全文
We evaluated the use of infrared (IR) video thermography to observe directly ice nucleation and propagation in plants. An imaging radiometer with an HgCdTe long-wave (8-12 [mu]m) detector was utilized to image the thermal response of plants during freezing. IR images were analyzed in real time and recorded on videotape. Information on the videotape was subsequently accessed and analyzed utilizing IR image analysis software. Freezing of water droplets as small as 0.5 [mu]L was clearly detectable with the radiometer. Additionally, a comparison of temperature tracking data collected by the radiometer with data collected with thermocouples showed close correspondence. Monitoring of an array of plant species under different freezing conditions revealed that ice nucleation and propagation are readily observable by thermal imaging. In many instances, the ice nucleation-active bacterium Pseudomonas syringae placed on test plants could be seen to initiate freezing of the whole plant. Apparent ice nucleation by intrinsic nucleators, despite the presence of ice nucleation-active bacteria, was also evident in some species. Floral bud tissues of peach (Prunus persica) could be seen to supercool below the temperature of stem tissues, and ice nucleation at the site of insertion of the thermocouple was frequently observed. Rates of propagation of ice in different tissues were also easily measured by thermal imaging. This study demonstrates that IR thermography is an excellent method for studying ice nucleation and propagation in plants.  相似文献   

11.
Infrared thermography has become a useful tool to assess surface temperatures of animals for thermoregulatory research. However, surface temperatures are an endpoint along the body's core-shell temperature gradient. Skin and fur are the peripheral tissues most exposed to ambient thermal conditions and are known to serve as thermosensors that initiate thermoregulatory responses. Yet relatively little is known about how surface temperatures of wild mammals measured by infrared thermography relate to subcutaneous temperatures. Moreover, this relationship may differ with the degree that fur covers the body. To assess the relationship between temperatures and temperature gradients in peripheral tissues between furred and bare areas, we collected data from wild mantled howling monkeys (Alouatta palliata) in Costa Rica. We used infrared thermography to measure surface temperatures of the furred dorsum and bare facial areas of the body, recorded concurrent subcutaneous temperatures in the dorsum, and measured ambient thermal conditions via a weather station. Temperature gradients through cutaneous tissues (subcutaneous-surface temperature) and surface temperature gradients (surface-ambient temperature) were calculated. Our results indicate that there are differences in temperatures and temperature gradients in furred versus bare areas of mantled howlers. Under natural thermal conditions experienced by wild animals, the bare facial areas were warmer than temperatures in the furred dorsum, and cutaneous temperature gradients in the face were more variable than the dorsum, consistent with these bare areas acting as thermal windows. Cutaneous temperature gradients in the dorsum were more closely linked to subcutaneous temperatures, while facial temperature gradients were more heavily influenced by ambient conditions. These findings indicate that despite the insulative properties of fur, for mantled howling monkeys surface temperatures of furred areas still demonstrate a relationship with subcutaneous temperatures. Given that most mammals possess dense fur, this provides insight for using infrared imaging in thermoregulatory studies of wild animals lacking bare skin.  相似文献   

12.
Chronic arthritis is a known medical problem in many species also in artiodactyla. The moist coldness that exists in the latitudes of Germany enhances this condition in animals that are accustomed to dry coldness in their natural habitats. This case report shows that thermography can be used for the assessment of arthritis in giraffes. Post-mortem results of pathology and computed tomography confirm the diagnosis based on thermography. Thermal imaging is a practical, non-invasive diagnostic tool for examining animals without stress and anesthesia.  相似文献   

13.
中医隔物灸的传热学研究   总被引:3,自引:0,他引:3  
运用有限元软件ANSYS进行数值建模模拟中医隔物灸产生的热在人体组织中的传导过程,并给出定性和定量分析。同时运用高灵敏度红外热像仪记录艾炷隔附子饼灸对生物组织热作用的过程,对比实验和计算结果验证了实验和数值模拟方法的合理性。然后建立简化的人体两维模型,得到穴位点横截面上热传导过程的两维温度分布图和热在生物组织中传播的整个过程。红外热像技术和数值建模方法为临床各种灸法的运用提供了理论和实验基础支持。  相似文献   

14.
A total of 112 patients participated in a prospective study of after-exercise thermography as a screening method for predicting risk of postoperative deep venous thrombosis. The fibrinogen-uptake test was used to detect thrombosis after elective surgery. The incidence of the complication showed no significant difference between patients who had had positive and those who had had negative thermograms. Thermography does not seem to be useful for predicting risk of postoperative thrombosis.  相似文献   

15.
Our cultural heritage is a common asset that tells the story of our shared past, is part of our origin and identity and has wide social relevance. Our works of art and our heritage must be enjoyed, appreciated and preserved for future generations. To this end, a wide and varied group of professionals, including conservators, restorers, curators, bibliographers, historians, archivists, but also scientists, such as biologists, chemists, physicists and bioinformaticians, work side by side to preserve our cultural heritage. Working together in this wide range of disciplines included in the so-called ‘heritage sciences’ is the only plausible way to contribute to the sustainable preservation of our heritage. The great progress made in recent years in conservation and restoration work, but also in the natural sciences considered within heritage science, has provided powerful tools and strategies for analytical and experimental research into historical and cultural objects that open up new frontiers for their diagnosis, monitoring and protection. Here we highlight some of the advances and challenges faced by the natural sciences at the service of art.  相似文献   

16.
This article reviews the fundamental techniques to quantify the physiological severity of (coronary) stenoses. Although a wide survey of different techniques and applications is provided, the focus of this review is on: 1) the assessment of the immediate effect of the stenoses on blood flow (i.e., the hemodynamic severity), and not on the assessment of the pathology of the vessel itself; 2) the flow reserve methods to defining the physiological severity of stenoses; and 3) the determination of blood flow and tissue perfusion by X-ray angiography (a short survey of other imaging modalities is provided as well). Although the practical implementation of the techniques is illustrated by applying them to coronary stenoses, most of the issues involved are of interest in other application areas (using other imaging modalities) as well. This review consists of four parts. The first part deals with the definition of stenoses severity; the second part with tracer kinetic theory necessary to determine flows by imaging; the third part focusses on (cardiac) imaging modalities, with an emphasis on X-ray angiography; and the last part illustrates the practical implementation of the techniques in cardiology.  相似文献   

17.
A new design for the multilayer superlens, with the sub-wavelength imaging ability for various 2D objects in the visible range, is introduced and analyzed. The designed superlens will be more versatile for practical applications. A rigorous and efficient approach based on the method of moments is used to study the imaging performance of this structure. The imaging performance of the proposed superlens is evaluated using the correlation coefficient. In this work, the closed-form dyadic Green’s functions in spatial domain, needed for the method of moments solutions, are obtained by applying the complex image method. Besides, the numerical integration is exploited to verify this method. The imaging results obtained via our approach are examined by comparison with the finite element method simulations that reveal good efficiency and accuracy of the proposed method.  相似文献   

18.
One of the main functions of infrared thermography (IRT) consists in detecting temperature changes in organisms caused by variations in surface blood circulation. IRT is a useful tool that has been used mainly as a diagnostic method for various stress-causing pathologies, though recent suggestions indicate that it can be used to assess the block quality of certain body regions. In the field of anaesthesiology, IRT has been applied to brachial and epidural blocks, while in algology, changes in surface blood circulation associated with sympathetic activity have been investigated. Thermography has also been employed to complement pain level scales based on the facial expressions of patients in critical condition, or after surgery. In addition, it has been used as a tool in research designed to evaluate different surgical procedures in human medicine, as in the case of surgical burrs for placing dental implants, where IRT helps assess the degree of heating associated with bone devascularisation, reduction in vascular perfusion as a consequence of stroke, and changes in the autonomous nervous system, or the degree of vascular changes in flaps applied to burn patients. In veterinary medicine, thermography has brought several benefits for animals in terms of evaluating lesions, diseases, and surgical procedures. The aim of this review is to evaluate how IRT can be used as a tool in surgical procedures, cases of vascular change, and pain monitoring in veterinary medicine with an emphasis on small animals.  相似文献   

19.
Eight Danish Holstein cows were milked with a 1-mm thick specially designed soft liner on their right rear teat and a standard liner mounted under extra high tension on their left rear teat. Four of the animals were overmilked for 5 min. Rear teats were subjected to ultrasound examination on the first day and to infrared thermography on the second day. Teats were submersed in ethanol 20 min post-milking on the second day. Ultrasonography measurements showed that teat canal length increased by 30–41% during milking. Twenty minutes after milking, teats milked with modified standard liners still had elongated teat canals while teats milked with the soft liner were normalized. Overmilking tended to increase teat wall thickness. Approximately 80% of variability in teat canal length, from before teat preparation to after milking, could be explained by changes during teat preparation. Thermography indicated a general drop in teat temperature during teat preparation. Teat temperature increased during milking and continued to increase until the ethanol challenge induced a significant drop. Temperatures approached pre-challenge rather than pre-milking temperatures within 10 minutes after challenge. Teat temperatures were dependent on type of liner. Mid-teat temperatures post-challenge relative to pre-teat preparation were dependent on overmilking. Thermography and ultrasound were considered useful methods to indirectly and non invasively evaluate teat tissue integrity.  相似文献   

20.
Breast cancer is a common and dreadful disease in women. Regular screening helps in its early detection. At present the most common methods of screening are by self examination and mammography. The surface temperature distribution of the breast can also provide some information on the presence of tumour. This distribution has a relation to the size and location of tumour and can be seen using thermography, where the infrared radiation emitted from the surface of the breast is recorded and a thermal pattern obtained. Thermography is a non-invasive and an inexpensive tool which could be used for early detection. In order to simulate the surface temperature distribution, a two-dimensional model of female breast with and without a carcinoma is considered. The breast is modelled with varying layer thickness close to the actual shape and numerically solved using finite element analysis. Temperature profiles are obtained for a normal breast and for a malignant one by varying the tumour size, location and the blood flow rates. The results show that the surface temperature for a malignant breast is higher than that of a normal one. In addition the size and location of the tumour do have an effect on the surface temperature distribution. It can also be seen that tumour of different sizes placed at the same location would yield the same maximum temperature depending on the blood perfusion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号