首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
A series of polydinitroaminocubanes have been designed computationally. We calculated the heats of formation, the detonation velocity (D) and detonation pressure (P) of the title compounds by density function theory (DFT) with 6-311?G** basis set. The relationship between the heats of formation and the molecular structures is discussed. The result shows that all cubane derivatives have high and positive heats of formation, which increase with increasing number of dinitroamino groups. The detonation performances of the title compound were estimated by Kamlet-Jacobs equation, and the result indicated that most cubane derivatives have good detonation performance over RDX (hexahydro-1,3,5-trinitro-1,3,5-trizine) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane). In addition, we also found that the heat of detonation (Q) is another very important impact in increasing detonation performance except density. The relative stabilities of the title compound are discussed in the terms of the calculated heats of formation, and the energy gaps between the frontier orbitals. The results have not only shown that these compounds may be used as high energy density compounds (HEDCs), but also provide some useful information for further investigation.  相似文献   

2.
Based on DFT-B3LYP/6-311G** method, the molecular geometric structures of polynitramineprismanes are fully optimized. The detonation performances, energy gaps, strain energies, as well as their stability were investigated to look for high energy density compounds (HEDCs). Our results show that all polynitramineprismanes have high and positive heat of formation. To construct the relationship between stabilities and structures, energy gaps and bond dissociation energies are calculated, and these results show that the energy gaps of prismane derivatives are much higher than that of TATB (0.1630). In addition, the C-C bonds on cage are confirmed as trigger bond in explosive reaction. All polynitramineprismanes have large strain energies, and the strain energies of all compounds are slightly smaller than prismane, which indicated that the strain energies were somewhat released compared to prismane. Considering the quantitative criteria of HEDCs, hexanitramineprismane is a good candidate of high energy compounds.  相似文献   

3.
Chi W  Sun G  Liu T  Li B  Wu H 《Journal of molecular modeling》2012,18(9):4557-4563
A series of polynitrosoprismanes, C(6)H(6 - n )(NO)( n ) (n?=?1-6), considered as high energy density compounds (HEDCs), have been designed computationally. We calculated the electronic structures, the heats of formation, the specific enthalpies of combustion, the bond dissociation energies, and the strain energies of the title compounds using density functional theory (DFT) with the 6-311G** basis set. It was found that the ΔE (LUMO-HOMO) values of the title compounds decrease as the number of nitroso groups increase, and the energy gaps of the prismane derivatives are much lower than that of TATB. Their high positive heats of formation indicate that polynitrosoprismanes can store a great deal of energy. Furthermore, the HOFs for the nitrosoprismane series were observed to decrease until three nitroso groups were connected to the prismane skeleton. For the polynitrosoprismanes, the trigger bond was confirmed to be the C-C bond in the skeleton. According to our calculations, all nitrosoprismanes appear to have large strain energies, and these calculations can provide basic information that may prove useful for the molecular design of novel high energy density materials.  相似文献   

4.
A series of polynitroprismanes, C(6)H(6-n )(NO(2))(n) (n?=?1-6) intended for use as high energy density compounds (HEDCs) were designed computationally. Their electronic structures, heats of formation, interactions between nitro groups, specific enthalpies of combustion, bond dissociation energies, and explosive performances (detonation velocities and detonation pressures) were calculated using density functional theory (DFT) with the 6-311 G** basis set. The results showed that all of the polynitroprismanes had high positive heats of formation that increased with the number of substitutions for the prismane derivatives, while the specific enthalpy of combustion decreased as the number of nitro groups increased. In addition, the range of enthalpy of combustion reducing is getting smaller. Interactions between ortho (vicinal) groups deviate from the group additivity rule and decrease as the number of nitro groups increases. In terms of thermodynamic stability, all of the polynitroprismanes had higher bond dissociation energies (BDEs) than RDX and HMX. Detonation velocities and detonation pressures were estimated using modified Kamlet-Jacobs equations based on the heat of detonation (Q) and the theoretical density of the molecule (ρ). It was found that ρ, D, and P are strongly linearly related to the number of nitro groups. Taking both their energetic properties and thermal stabilities into account, pentanitroprismane and hexanitroprismane are potential candidate HEDCs.  相似文献   

5.
A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX.  相似文献   

6.
Dinitroamino benzene derivatives are designed and studied in detail with quantum chemistry method. The molecular theory density, heats of formation, bond dissociation energies, impact sensitive and detonation performance are investigated at DFT-B3LYP/6-311G** level. The results of detonation performance indicated most of the compounds have better detonation velocity and pressure than RDX and HMX. The N-N bond can be regard as the trigger bond in explosive reaction, and the bond dissociation energies of trigger bond are almost not affected by the position and number of substituent group. The impact sensitive are calculated by two different theory methods. It is found that the compounds, which can become candidates of high energy materials, have smaller H50 values than RDX and HMX. It is hoped that this work can provide some basis information for further theory and experiment studies of benzene derivatives.  相似文献   

7.
Trinitromethyl-substituted aminotetrazoles with –NH2, –NO2, –N3, and –NHC(NO2)3 groups were investigated at the B3LYP/6-31G(d) level of density functional theory. Their sublimation enthalpies, thermodynamic properties, and heats of formation were calculated. The thermodynamic properties of these compounds increase with temperature as well as with the number of nitro groups attached to the tetrazole ring. In addition, the detonation velocities and detonation pressures of these compounds were successfully predicted using the Kamlet–Jacobs equations. It was found that these compounds exhibit good detonation properties, and that compound G (D = 9.2 km/s, P = 38.8 GPa) has the most powerful detonation properties, which are similar to those of the well-known explosive HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Finally, the electronic structures and bond dissociation energies of these compounds were calculated. The BDEs of their C–NO2 bonds were found to range from 101.9 to 125.8 kJ/mol-1. All of these results should provide useful fundamental information for the design of novel HEDMs.  相似文献   

8.
Two new nitramine compounds containing pyridine, 1,3,5,7-tetranitro-8-(nitromethyl) -4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine and its N-oxide 1,3,5,7-tetranitro-8- (nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine-4-ol were proposed. Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared spectra, and thermodynamic properties at the B3LYP/6-31G* level. Their detonation performances evaluated using the Kamlet-Jacobs equations with the calculated densities and heats of formation are superior to those of HMX. The predicted densities of them were ca. 2 g*cm-3, detonation velocities were over 9 km*s-1, and detonation pressures were about 40 GPa, showing that they may be potential candidates of high energy density materials (HEDMs). The natural bond orbital analysis indicated that N-NO2 bond is the trigger bond during thermolysis process. The stability of the title compounds is slightly lower than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The results of this study may provide basic information for the molecular design of new HEDMs.  相似文献   

9.
As part of a search for high energy density materials (HEDMs), a series of purine derivatives with nitro groups were designed computationally. The relationship between the structures and the performances of these polynitropurines was studied. Density functional theory (DFT) at the B3LYP/6-311G** level was employed to evaluate the heats of formation (HOFs) of the polynitropurines by designing an isodesmic reaction method. Results indicated that the HOFs were influenced by the number and positions of substituent groups. Detonation properties were evaluated using the Kamlet–Jacobs equations, based on the theoretical densities and heats of formation of the polynitropurines. The relative stabilities of the polynitropurines were studied via the pyrolysis mechanism and the UB3LYP/6-311G** method. Homolysis of the ring–NO2 bond is predicted to be the initial step in the thermal decomposition of these purine derivatives. Considering their detonation properties and relative stabilities, the tetranitropurine (D1) derivatives may be regarded as potential candidates for practical HEDCs. These results may provide useful information for further investigations.  相似文献   

10.
The heats of formation (HOFs), electronic structures, energetic properties, and thermal stabilities of a series of energetic bridged di-1,3,5-triazine derivatives with different substituents and linkages were studied using density functional theory. It was found that the groups -N(3) and -N=N- are effective structural units for improving the HOF values of the di-1,3,5-triazine derivatives. The effects of the substituents on the HOMO-LUMO gap combine with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that substituting the -ONO(2), -NF(2), or -N=N- group is very useful for enhancing the detonation performance of these derivatives. Analysis of the bond dissociation energies for several relatively weak bonds suggests that most of the derivatives have good thermal stability. On the whole, the -NH(2), -N(3), -NH-, and -CH=CH- groups are effective structural units for increasing the thermal stabilities of the derivatives. Based on detonation performance and thermal stability, nine of the compounds can be considered potential candidates for high energy density materials with reduced sensitivity.  相似文献   

11.
A molecular dynamics method was employed to study the binding energies associated with the cocrystallization (at selected crystal planes) of either 1,3,5-triamino-2,4,6-trinitro-benzene (TATB), 1,1-diamino-2,2-dinitroethylene, 3-nitro-1,2,4-triazol-5-one (TATB, FOX-7, and NTO, respectively, all of which are explosives), or N,N-dimethylformamide (DMF, a nonenergetic solvent) in various molar ratios with 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane in its α and β conformations (α-HMX and β-HMX, respectively). The results showed that the cocrystals with low molar ratios (2:1, 1:1, 1:2, and 1:3) were the most stable. The binding energies of HMX/NTO and HMX/DMF were larger than those of HMX/TATB and HMX/FOX-7. According to the calculated stabilities, HMX prefers to adopt its α form in HMX/TATB and its β form in HMX/NTO, whereas the two forms coexist in HMX/FOX-7. For HMX/TATB, HMX/NTO, and α-HMX/FOX-7, increasing the proportion of the cocrystal component with the highest detonation heat (HMX in the first two cases, FOX-7 in the latter) increases the detonation heat, velocity, and pressure of the cocrystal. However, increasing the proportion of the component with the highest detonation heat in β-HMX/FOX-7 and γ-CL-20/FOX-7 increases the detonation heat of the cocrystal but decreases its detonation velocity. An investigation of the surface electrostatic potential revealed how the sensitivity changes upon cocrystal formation.
Graphical Abstract Surface electrostatic potential of HMX/TATB
  相似文献   

12.
In this work, the experimental synthesized bipyridines 3,3'-Dinitro-2,2'-bipyridine (DNBPy), 3,3'-Dinitro-2,2'-bipyridine-1,1'-dioxide (DNBPyO), and (3-Nitro-2-pyridyl)(5-nitro-2-pyridyl) amine (NPyA), and a set of designed dipyridines that have similar frameworks but different linkages and substituents with NPyA were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing. Results show that this method gives a good estimation of density in comparison with the available experimental data for DNBPy, DNBPyO, and NPyA. The predicted detonation velocities and pressures indicate that the performance of dipyridines linked with -O-, -NH-, or -CH(2)- bridges have not been improved compared with that of the directly linked dipyridines, but all derivatives have better detonation properties than DNBPy, DNBPyO, and NPyA because of the presence of more nitro groups. An analysis of the bond dissociation energies (BDEs) or the impact sensitivity (h (50)) suggests that introduction of different bridges but not substituents has little influence on thermal stability. The calculated h (50) may be more reliable than BDE for predicting stability. Four bridged bipyridines have quite good detonation performance and low sensitivity.  相似文献   

13.
The derivatives of purine are designed through substituting the hydrogen atoms on it for nitro and amino functional groups. Geometries and frequency are analyzed at the B3LYP/6-31 G** level of density functional theory(DFT). Heats of formation (HOF), bond dissociation energy(BDE) and detonation parameters (detonation velocity and detonation pressure) are obtained in detail at the same level. It is found that the BDE values of all derivatives are over 120KJ·mol(-1), and have high positive heats of formation. These derivatives possess excellent detonation properties, for B1, B2, and C, the detonation velocity are 9.58, 9.57,and 9.90 km·s(-1), and the detonation pressure are 43.40,46.05, and 46.37 Gpa, respectively, the detonation performances are better than cyclotrimethylenetrinitramine (RDX)and cyclotetramethylenetetranitramine (HMX). Hence, the derivations of purine may be promising well-behaved high energy density materials.  相似文献   

14.
In an attempt to find superior propellants, 2-diazo-4,6-dinitrophenol (DDNP) and its –NO2, –NH2, –CN, –NC, –ONO2, and –NF2 derivatives were studied at the B3LYP/6-311++G** level of density functional theory (DFT). Sensitivity was evaluated using bond dissociation enthalpies (BDEs) and molecular surface electrostatic potentials. The C–NO2 bond appears to be the trigger bond during the thermolysis process for these compounds, except for the –ONO2 and –NF2 derivatives. Electrostatic potential results show that electron-withdrawing substituents make the charge imbalance more anomalous, which may change the strength of the bond, especially the weakest trigger bond. Most of the DDNP derivatives have the impact sensitivities that are higher than that of DDNP, making them favorable for use as solid propellants in micro-rockets. The theoretical densities (ρ), heats of formation (HOFs), detonation energies (Q), detonation pressures (P), and detonation velocities (D) of the compounds were estimated. The effects of various substituent groups on ρ, HOF, Q, D, and P were investigated. Some derivatives exhibit perfect detonation properties. The calculated relative specific impulses (I r,sp) of all compounds except for –NH2 derivatives were higher than that of DDNP, and also meet the requirements of propellants.  相似文献   

15.
The density functional theory (DFT) was employed to calculate the energetic properties of several aminopolynitroazoles. The calculations were performed to study the effect of amino and nitro substituents on the heats of formation, densities, detonation performances, thermal stabilities, and sensitivity characteristics of azoles. DFT-B3LYP, DFT-B3PW91, and MP2 methods utilizing the basis sets 6-31 G* and 6-311 G (2df, 3p) were adopted to predict HOFs via designed isodesmic reactions. All of the designed aminopolynitroazoles had heats of formation of >220 kJ mol(-1). The crystal densities of the aminopolynitroazoles were predicted with the cvff force field. All of the energetic azoles had densities of >1.83 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and heats of formation. It was found that aminopolynitroazoles have a detonation velocity of about 9.1 km/s and detonation pressure of 36 GPa. The bond dissociation energies for the C-NO(2) and N-NO(2) bonds were analyzed to investigate the stabilities of the designed molecules. The charge on the nitro group was used to assess impact sensitivity in the present study. The results obtained imply that the designed molecules are stable and are expected to be candidates for high-energy materials (HEMs).  相似文献   

16.
The heats of formation (HOFs), electronic structure, energetic properties, and thermal stabilities for a series of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole derivatives with different substituents and substitution positions and numbers of nitrogen atoms in the nitrobenzene rings were studied using the DFT-B3LYP method. All the substituted compounds have higher HOFs than their parent compounds. As the number of nitrogen atoms in the nitrobenzene ring increases, the HOFs of the derivatives with the same substituent rise gradually. Replacing carbon atoms in the nitrobenzene with nitrogen atoms to form N–N bonds is very helpful in improving their HOFs. Most of the substituted compounds have higher HOMO–LUMO gaps than the corresponding unsubstituted compounds. Substitution of the –NO2, –NF2, or –ONO2 group and an increase in the number of nitrogen atoms in the nitrobenzene rings are useful for enhancing their detonation performance. The substituents’ substitution is not favorable for improving thermal stability. Considering detonation performance and thermal stability, five compounds may be considered potential candidates for high energy density compounds (HEDCs).  相似文献   

17.
Substituted s-tetrazine compounds were designed and investigated in order to find comprehensive relationships between the structures and performances of high-nitrogen energetic compounds. Density functional theory (DFT) was used to predict the optimized geometries, electronic structures, heats of formation and densities, and the detonation properties were evaluated by using the VLW equation of state (EOS). Calculation results show that there are good linear relationships between heats of formation, densities, detonation properties and the number of N atom in all designed high-nitrogen compounds. Furthermore, several designed high-nitrogen compounds show good detonation velocities and pressures compared with octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), making them potential candidates for high-energy-density materials (HEDM).  相似文献   

18.
The pyrazole-pyridine derivatives were optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G(d,p) and DFT-B3P86/6-31G(d,p) levels. Molecular mechanics (MM) calculations were performed for the title compounds. Heats of formation (HOFs) were predicted through designed isodesmic reactions. Detonation performance was evaluated by using the Kamlet-Jacobs equations based on the calculated densities and heats of formation. The thermal stability of the title compounds was investigated via the bond dissociation energies (BDEs). The simulation results reveal that the compound with one pyrazole ring that is fully nitro-substituted performs similarly to the famous explosive HMX, and the compound with two pyrazole rings that are fully nitro-substituted outperforms HMX. According to the quantitative standard of energetics and stability as high energy density materials (HEDMs), the compound with two pyrazole rings that are fully nitro-substituted essentially satisfies this requirement.  相似文献   

19.
Molecular dynamics (MD) methods were employed to study the binding energies and mechanical properties of selected crystal planes of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/nitroguanidine (NQ) cocrystals at different molecular molar ratios. The densities and detonation velocities of the cocrystals at different molar ratios were estimated. The intermolecular interaction and bond dissociation energy (BDE) of the N–NO2 bond in the HMX:NQ (1:1) complex were calculated using the B3LYP, MP2(full) and M06-2X methods with the 6-311++G(d,p) and 6-311++G(2df,2p) basis sets. The results indicated that the HMX/NQ cocrystal prefers cocrystalizing in a 1:1 molar ratio, and the cocrystallization is dominated by the (0 2 0) and (1 0 0) facets. The K, G, and E values of the ratio of 1:1 are smaller than those of the other ratios, and the 1:1 cocrystal has the best ductility. The N–NO2 bond becomes stronger upon the formation of the intermolecular H-bonding interaction and the sensitivity of HMX decreases in the cocrystal. This sensitivity change in the HMX/NQ cocrystal originates not only from the formation of the intermolecular interaction but also from the increment of the BDE of N–NO2 bond in comparison with isolated HMX. The HMX/NQ (1:1) cocrystal exhibits good detonation performance. Reduced density gradient (RDG) reveals the nature of cocrystallization. Analysis of the surface electrostatic potential further confirmed that the sensitivity decreases in complex (or cocrystal) in comparison with that in isolated HMX.
Graphical Abstract Binding energies and mechanical properties of HMX/NQ cocrystals in different molecular molar ratios were studied using molecular dynamics methods. The origin of the sensitivity change in the HMX/NQ cocrystal originates from formation of intermolecular interactions and the bond dissociation energy increment of the N–NO2 bond
  相似文献   

20.
Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO–LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm3), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号