首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The foraminiferal order Rotaliida represents one third of the extant genera of foraminifers. The shells of these organisms are extensively used to decipher characteristics of marine ecosystems and global climate events.It was shown that shell calcite of benthic Rotaliida is twinned. We extend our previous work on microstructure and texture characterization of benthic Rotaliida and investigate shell calcite organization for planktonic rotaliid species. Based on results gained from electron backscattered diffraction (EBSD) and field emission electron microscopy (FESEM) imaging of chemically etched/fixed shell surfaces we show for the planktonic species Globigerinoides sacculifer, Pulleniatina obliquiloculata, Orbulina universa (belonging to the two main planktonic, the globigerinid and globorotaliid, clades): very extensive 60°-{0 0 1}-twinning of the calcite and describe a new and specific microstructure for the twinned crystals. We address twin and crystal morphology development from nucleation within a biopolymer template (POS) to outermost shell surfaces. We demonstrate that the calcite of the investigated planktonic Rotaliida forms through competitive growth. We complement the structural knowledge gained on the clade 1 and clade 2 species with EBSD results of Globigerinita glutinata and Candeina nitida shells (clade 3 planktonic species). The latter are significantly less twinned and have a different shell calcite microstructure.We demonstrate that the calcite of all rotaliid species is twinned, however, to different degrees. We discuss for the species of the three planktonic clades characteristics of the twinned calcite and of other systematic misorientations. We address the strong functionalization of foraminiferal calcite and indicate how the twinning affects biocalcite material properties.  相似文献   

2.
Methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. In vivo, Msrs are essential in the protection of cells against oxidative damage to proteins and in the virulence of some bacteria. Two structurally unrelated classes of Msrs, named MsrA and MsrB, exist. MsrB are stereospecific to R epimer on the sulfur of sulfoxide. All MsrB share a common reductase step with the formation of a sulfenic acid intermediate. For the subclass of MsrB whose recycling process passes through the formation of an intradisulfide bond, the recycling reducer is thioredoxin. In the present study, X-ray structures of Neisseria meningitidis MsrB have been determined. The structures have a fold based on two β-sheets, similar to the fold already described for other MsrB, with the recycling Cys63 located in a position favorable for disulfide bond formation with the catalytic Cys117. X-ray structures of Xanthomonas campestris MsrB have also been determined. In the C117S MsrB structure with a bound substrate, the recycling Cys31 is far from Ser117, with Trp65 being essential in the reductase step located in between. This positioning prevents the formation of the Cys31-Cys117 disulfide bond. In the oxidized structure, a drastic conformational reorganization of the two β-sheets due to withdrawal of the Trp65 region from the active site, which remains compatible with an efficient thioredoxin-recycling process, is observed. The results highlight the remarkable structural malleability of the MsrB fold.  相似文献   

3.
Light chain amyloidosis is one of the most common systemic amyloidosis, characterized by the deposition of immunoglobulin light variable domain as insoluble amyloid fibrils in vital organs, leading to the death of patients. Germline λ6a is closely related with this disease and has been reported that 25% of proteins encoded by this germline have a change at position 24 where an Arg is replaced by a Gly (R24G). This germline variant reduces protein stability and increases the propensity to form amyloid fibrils. In this work, the crystal structure of 6aJL2-R24G has been determined to 2.0 Å resolution by molecular replacement. Crystal belongs to space group I212121 (PDB ID 5JPJ) and there are two molecules in the asymmetric unit. This 6aJL2-R24G structure as several related in PDB (PDB entries: 5C9K, 2W0K, 5IR3 and 1PW3) presents by crystal packing the formation of an octameric assembly in a helicoidal arrangement, which has been proposed as an important early stage in amyloid fibril aggregation. However, other structures of other protein variants in PDB (PDB entries: 3B5G, 3BDX, 2W0L, 1CD0 and 2CD0) do not make the octameric assembly, regardless their capacity to form fibers in vitro or in vivo. The analysis presented here shows that the ability to form the octameric assembly in a helicoidal arrangement in crystallized light chain immunoglobulin proteins is not required for amyloid fibril formation in vitro. In addition, the fundamental role of partially folded states in the amyloid fibril formation in vitro, is not described in any crystallographic structure published or analyzed here, being those structures, in any case examples of proteins in their native states. Those partially folded states have been recently described by cryo-EM studies, showing the necessity of structural changes in the variants before the amyloid fiber formation process starts.  相似文献   

4.

Background

Streptococcus pneumoniae is the major cause of community-acquired pneumonia and is also associated with bronchitis, meningitis, otitis and sinusitis. The emergence and increasing prevalence of resistance to penicillin and other antibiotics has led to interest in other anti-pneumonococcal drugs such as quinolones that target the enzymes DNA gyrase and topoisomerase IV. During crystallization and in the avenues to finding a method to determine phases for the structure of the ParC55 breakage-reunion domain of topoisomerase IV from Streptococcus pneumoniae, obstacles were faced at each stage of the process. These problems included: majority of the crystals being twinned, either non-diffracting or exhibiting a high mosaic spread. The crystals, which were grown under conditions that favoured diffraction, were difficult to flash-freeze without loosing diffraction. The initial structure solution by molecular replacement failed and the approach proved to be unviable due to the complexity of the problem. In the end the successful structure solution required an in-depth data analysis and a very detailed molecular replacement search.

Methodology/Principal Findings

Crystal anti-twinning agents have been tested and two different methods of flash freezing have been compared. The fragility of the crystals did not allow the usual method of transferring the crystals into the heavy atom solution. Consequently, it was necessary to co-crystallize in the presence of the heavy atom compound. The multiple isomorphous replacement approach was unsuccessful because the 7 cysteine mutants which were engineered could not be successfully derivatized. Ultimately, molecular replacement was used to solve the structure by sorting through a large number of solutions in space group P1 using CNS.

Conclusions/Significance

The main objective of this paper is to describe the obstacles which were faced and overcome in order to acquire data sets on such difficult crystals and determine phases for successful structure solution.  相似文献   

5.
The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer’s and Parkinson’s diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ40-PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ40-PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates.  相似文献   

6.
The well-known procedure implemented in ClustalW oriented on the sequence comparison was applied to structure comparison. The consensus sequence as well as consensus structure has been defined for proteins belonging to serpine family. The structure of early stage intermediate was the object for similarity search. The high values of Wsequence appeared to be accordant with high values of Wstructure making possible structure comparison using common criteria for sequence and structure comparison.Since the early stage structural form has been created according to limited conformational sub-space which does not include the β-structure (this structure is mediated by C7eq structural form), is particularly important to see, that the C7eq structural form may be treated as the seed for β-structure present in the final native structure of protein.The applicability of ClustalW procedure to structure comparison makes these two comparisons unified.  相似文献   

7.
The molecular structure of the plasma membrane of the haploid strain Saccharomyces cerevisiae X-2180 1A has been studied by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein and glycoprotein components have been identified and their apparent Mr determined. A glycoprotein showing an apparent Mr of 27 500 has been shown to be the main structural component. Treatment of the cells with cycloheximide prior to plasma membrane isolation resulted in a redistribution of the relative amounts of each protein band and a drastic reduction in the number of Schiff positive bands. It is postulated that treatment with this drug rids the plasma membrane of glycoprotein secretory components which are in the process of being secreted to the periplasmic space, thus allowing the study of the basic structural components of the organelle. The electrophoretic pattern of the internal membranes revealed close similarities with that of the plasma membrane and though two-dimensional electrophoresis might disclose greater differences, these similarities suggest a common origin for most of the components of both membranous systems. Finally, radioiodination techniques have been used in studying the asymmetric disposition of some of the components of the plasma membrane. At least five polypeptides were identified as located to the outer layer of the plasma membrane and two more glycopeptides were shown to span across the bilayer.  相似文献   

8.
Cytochrome P450 reductase (CPR) is a diflavin enzyme that transfers electrons to many protein partners. Electron transfer from CPR to cyt c has been extensively used as a model reaction to assess the redox activity of CPR. CPR is composed of multiple domains, among which the FMN binding domain (FBD) is the direct electron donor to cyt c. Here, electron transfer and complex formation between FBD and cyt c are investigated. Electron transfer from FBD to cyt c occurs at distinct rates that are dependent on the redox states of FBD. When compared with full-length CPR, FBD reduces cyt c at a higher rate in both the semiquinone and hydroquinone states. The NMR titration experiments reveal the formation of dynamic complexes between FBD and cyt c on a fast exchange time scale. Chemical shift mapping identified residues of FBD involved in the binding interface with cyt c, most of which are located in proximity to the solvent-exposed edge of the FMN cofactor along with other residues distributed around the surface of FBD. The structural model of the FBD-cyt c complex indicates two possible orientations of complex formation. The major complex structure shows a salt bridge formation between Glu-213/Glu-214 of FBD and Lys-87 of cyt c, which may be essential for the formation of the complex, and a predicted electron transfer pathway mediated by Lys-13 of cyt c. The findings provide insights into the function of CPR and CPR-cyt c interaction on a structural basis.  相似文献   

9.
Artificial spider silk proteins may form fibers with exceptional strength and elasticity. Wrapping silk, or aciniform silk, is the toughest of the spider silks, and has a very different protein composition than other spider silks. Here, we present the characterization of an aciniform protein (AcSp1) subunit named W1, consisting of one AcSp1 199 residue repeat unit from Argiope trifasciata. The structural integrity of recombinant W1 is demonstrated in a variety of buffer conditions and time points. Furthermore, we show that W1 has a high thermal stability with reversible denaturation at ∼71 °C and forms self-assembled nanoparticle in near-physiological conditions. W1 therefore represents a highly stable and structurally robust module for protein-based nanoparticle formation.  相似文献   

10.
Clostridium perfringens enterotoxin (CPE) is a major cause of food poisoning and antibiotic-associated diarrhea. Upon its release from C. perfringens spores, CPE binds to its receptor, claudin, at the tight junctions between the epithelial cells of the gut wall and subsequently forms pores in the cell membranes. A number of different complexes between CPE and claudin have been observed, and the process of pore formation has not been fully elucidated. We have determined the three-dimensional structure of the soluble form of CPE in two crystal forms by X-ray crystallography, to a resolution of 2.7 and 4.0 Å, respectively, and found that the N-terminal domain shows structural homology with the aerolysin-like β-pore-forming family of proteins. We show that CPE forms a trimer in both crystal forms and that this trimer is likely to be biologically relevant but is not the active pore form. We use these data to discuss models of pore formation.  相似文献   

11.
βαβ structural motifs are commonly used building blocks in protein structures containing parallel β-sheets. However, to our knowledge, no stand-alone βαβ structure has been observed in nature to date. Recently, for the first time that we know of, a small protein with an independent βαβ structure (DS119) was successfully designed in our laboratory. To understand the folding mechanism of DS119, in the study described here, we carried out all-atom molecular dynamics and coarse-grained simulations to investigate its folding pathways and energy landscape. From all-atom simulations, we successfully observed the folding event and got a stable folded structure with a minimal root mean-square deviation of 2.6 Å with respect to the NMR structure. The folding process can be described as a fast collapse phase followed by rapid formation of the central helix, and then slow formation of a parallel β-sheet. By using a native-centric Gō-like model, the cooperativity of the system was characterized in terms of the calorimetric criterion, sigmoidal transitions, conformation distribution shifts, and free-energy profiles. DS119 was found to be an incipient downhill folder that folds more cooperatively than a downhill folder, but less cooperatively than a two-state folder. This may reflect the balance between the two structural elements of DS119: the rapidly formed α-helix and the slowly formed parallel β-sheet. Folding times estimated from both the all-atom simulations and the coarse-grained model were at microsecond level, making DS119 another fast folder. Compared to fast folders reported previously, DS119 is, to the best of our knowledge, the first that exhibits a parallel β-sheet.  相似文献   

12.
Dps proteins contain a ferroxidase site that binds and oxidizes iron, thereby preventing hydroxyl radical formation by Fenton reaction. Although the involvement of a di-iron ferroxidase site has been suggested, X-ray crystal structures of various Dps members have shown either one or two iron cations with various occupancies despite the high structural conservation of the site. Similarly, structural studies with zinc, a redox-stable replacement for iron, have shown the binding of either one or two zinc ions. Here, the crystal structure of Streptococcus pyogenes Dpr in complex with zinc reveals the binding of two zinc cations in the ferroxidase center and an additional zinc-binding site at the surface of the protein. The results suggest a structural basis for the protection of Streptococcus pyogenes in zinc stress conditions and provide a clear evidence for a di-zinc and di-iron ferroxidase site in Streptococcus pyogenes Dpr protein.  相似文献   

13.
The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.  相似文献   

14.
Ribosomal stalk is involved in the formation of the so-called “GTPase-associated site” and plays a key role in the interaction of ribosome with translation factors and in the control of translation accuracy. The stalk is formed by two or three copies of the L7/L12 dimer bound to the C-terminal tail of protein L10. The N-terminal domain of L10 binds to a segment of domain II of 23S rRNA near the binding site for ribosomal protein L11. The structure of bacterial L10 in complex with three L7/L12 N-terminal dimers has been determined in the isolated state, and the structure of the first third of archaeal L10 bound to domain II of 23S rRNA has been solved within the Haloarcula marismortui 50S ribosomal subunit. A close structural similarity between the RNA-binding domain of archaeal L10 and the RNA-binding domain of bacterial L10 has been demonstrated. In this work, a long RNA-binding N-terminal fragment of L10 from Methanococcus jannaschii has been isolated and crystallized. The crystal structure of this fragment (which encompasses two-thirds of the protein) has been solved at 1.6 Å resolution. The model presented shows the structure of the RNA-binding domain and the structure of the adjacent domain that exist in archaeal L10 and eukaryotic P0 proteins only. Furthermore, our model incorporated into the structure of the H. marismortui 50S ribosomal subunit allows clarification of the structure of the archaeal ribosomal stalk base.  相似文献   

15.
S100A4 (metastasin) is a member of the S100 family of calcium-binding proteins that is directly involved in tumorigenesis. Until recently, the only structural information available was the solution NMR structure of the inactive calcium-free form of the protein. Here we report the crystal structure of human S100A4 in the active calcium-bound state at 2.03 Å resolution that was solved by molecular replacement in the space group P65 with two molecules in the asymmetric unit from perfectly merohedrally twinned crystals. The Ca2 +-bound S100A4 structure reveals a large conformational change in the three-dimensional structure of the dimeric S100A4 protein upon calcium binding. This calcium-dependent conformational change opens up a hydrophobic binding pocket that is capable of binding to target proteins such as annexin A2, the tumor-suppressor protein p53 and myosin IIA. The structure of the active form of S100A4 provides insight into its interactions with its binding partners and a better understanding of its role in metastasis.  相似文献   

16.
The CorA Mg2+ channel is a homopentamer with five-fold symmetry. Each monomer consists of a large cytoplasmic domain and two transmembrane helices connected via a short periplasmic loop. In the Thermotoga maritima CorA crystal structure, a Mg2+ is bound between D89 of one monomer and D253 of the adjacent monomer (M1 binding site). Release of Mg2+ from these sites has been hypothesized to cause opening of the channel. We generated mutants to disrupt Mg2+ interaction with the M1 site. Crystal structures of the D89K/D253K and D89R/D253R mutants, determined to 3.05 and 3.3?Å, respectively, showed no significant structural differences with the wild type structure despite absence of Mg2+ at the M1 sites. Both mutants still appear to be in the closed state. All three mutant CorA proteins exhibited transport of 63Ni2+, indicating functionality. Thus, absence of Mg2+ from the M1 sites neither causes channel opening nor prevents function. We also provide evidence that the T. maritima CorA is a Mg2+ channel and not a Co2+ channel.  相似文献   

17.
Tansakul P  Shibuya M  Kushiro T  Ebizuka Y 《FEBS letters》2006,580(22):5143-5149
Panax ginseng produces triterpene saponins called ginsenosides, which are classified into two groups by the skeleton of aglycones, namely dammarane type and oleanane type. Dammarane-type ginsenosides dominate over oleanane type not only in amount but also in structural varieties. However, their sapogenin structure is restricted to two aglycones, protopanaxadiol and protopanaxatriol. So far, the genes encoding oxidosqualene cyclase (OSC) responsible for formation of dammarane skeleton have not been cloned, although OSC yielding oleanane skeleton (β-amyrin synthase) has been successfully cloned from this plant. In this study, cDNA cloning of OSC producing dammmarane triterpene was attempted from hairy root cultures of P. ginseng by homology based PCR method. A new OSC gene (named as PNA) obtained was expressed in a lanosterol synthase deficient (erg7) Saccharomyces cerevisiae strain GIL77. LC-MS and NMR analyses identified the accumulated product in the yeast transformant to be dammarenediol-II, demonstrating PNA to encode dammarenediol-II synthase.  相似文献   

18.
Background: Prion diseases are fatal and infectious neurodegenerative diseases affecting humans and animals. Rabbits are one of the few mammalian species reported to be resistant to infection from prion diseases isolated from other species (I. Vorberg et al., Journal of Virology 77 (3) (2003) 2003-2009). Thus the study of rabbit prion protein structure to obtain insight into the immunity of rabbits to prion diseases is very important.Findings: The paper is a straight forward molecular dynamics simulation study of wild-type rabbit prion protein (monomer cellular form) which apparently resists the formation of the scrapie form. The comparison analyses with human and mouse prion proteins done so far show that the rabbit prion protein has a stable structure. The main point is that the enhanced stability of the C-terminal ordered region especially helix 2 through the D177-R163 salt-bridge formation renders the rabbit prion protein stable. The salt bridge D201-R155 linking helixes 3 and 1 also contributes to the structural stability of rabbit prion protein. The hydrogen bond H186-R155 partially contributes to the structural stability of rabbit prion protein.Conclusions: Rabbit prion protein was found to own the structural stability, the salt bridges D177-R163, D201-R155 greatly contribute and the hydrogen bond H186-R155 partially contributes to this structural stability. The comparison of the structural stability of prion proteins from the three species rabbit, human and mouse showed that the human and mouse prion protein structures were not affected by the removing these two salt bridges. Dima et al. (Biophysical Journal 83 (2002) 1268-1280 and Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15335-15340) also confirmed this point and pointed out that “correlated mutations that reduce the frustration in the second half of helix 2 in mammalian prion proteins could inhibit the formation of PrPSc”.  相似文献   

19.
Madurella mycetomatis is the main cause of mycetoma, a chronic, granulomatous skin infection of the subcutaneous tissue. One of the main virulence factors is the formation of grains, which are difficult to treat with the currently available antifungal drugs. Studies have indicated that zinc homeostasis could be an important factor for grain formation. Therefore, in this review the mechanisms behind zinc homeostasis in other fungal species were summarized and an in silico analysis was performed to identify the components of zinc homeostasis in M. mycetomatis. Orthologues for many of the zinc homeostasis components found in other fungal species could also be identified in M. mycetomatis, including those components that have been identified to play a role in biofilm formation, a process which has some parallels with grain formation. Zinc homeostasis may well play an important role in the process of grain formation and, therefore, more knowledge on this subject in M. mycetomatis is required as it may lead to novel therapies to combat this debilitating disease.  相似文献   

20.
Na+/H+ antiporters have a crucial role in pH and Na+ homeostasis in cells. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and revealed a previously unknown structural fold, which has since been identified in several secondary active transporters. This unique structural fold is very delicately electrostatically balanced. Asp133 and Lys 300 have been ascribed essential roles in this balance and, more generally, in the structure and function of the antiporter. In this work, we show the multiple roles of Asp133 in NhaA: (i) The residue's negative charge is critical for the stability of the NhaA structure. (ii) Its main chain is part of the active site. (iii) Its side chain functions as an alkaline-pH-dependent gate, changing the protein's conformation from an inward-facing conformation at acidic pH to an outward-open conformation at alkaline pH, opening the periplasm funnel. On the basis of the experimental data, we propose a tentative mechanism integrating the structural and functional roles of Asp133.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号