首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a theoretical assessment of the photosensitization properties of meso-mono(N-methylpyridyl) triphenylporphyrin (1, MmPyP+), which interacts with DNA nucleotide pairs [adenine (A)-thymine (T); guanine (G)-cytosine (C)] via an external binding mode. The photosensitization properties of the arrangements 1A, 1T, 1G and 1C were investigated. A set of density functionals (B3LYP, PBE0, CAM-B3LYP, M06-2X, B97D) with the 6-31G(d) basis set was used to calculate the electronic absorption spectra in solution (water) following TD-DFT methodology. In all the arrangements, with the exception of 1C, the functional PBE0 produced the lowest deviation of the Soret band (0.1–0.2 eV). Using this functional, we show that the porphyrin–nucleotide interaction is stabilized, as reflected by a larger HOMO–LUMO gap than free porphyrin. A more important effect of the interaction corresponds to the red-shift of the Soret band of MmPyP+, which is in agreement with experimental results. This behavior could be explained by the higher symmetry found in arrangements with a lower dipole moment, and by the more symmetrical distribution of electronic density along the molecular orbitals, which provokes electronic transitions of lower energy. The structural model allowed us to show that MmPyP+ improves the characteristics as a photosensitizer when it interacts with nucleotide pairs due to the longer wavelength required for the Soret band. Results obtained for porphyrins with larger monocationic substituents (2, MmAP+; 3, MONPP+) do not lead to the same behavior. Although the structural model is insufficient to describe porphyrin photosensitization, it suggests that improvements in this property are produced by the inclusion of a cationic charge in the pyridyl ring and a smaller size of the substituent leading to a better communication in the porphyrin–nucleotide pair.  相似文献   

2.
Macrocyclic aromaticity is the most important concept in porphyrin chemistry. We propose a general graph-theoretical procedure for predicting the main macrocyclic conjugation pathway in porphyrinoids. This procedure, based on calculated bond resonance energies (BREs), can be applied not only to natural and expanded porphyrins but also to porphyrinoids with fused rings. Main macrocyclic conjugation pathways predicted with this procedure are exactly the same as those proposed by porphyrin chemists. Macrocyclic aromaticity can be estimated readily from the BRE for any of the π-bonds linking adjacent pyrrolic rings. It was found that N-fusion often gives rise to anti-aromatic tripentacyclic subunits with negative BREs. Thus, our procedure properly characterizes macrocyclic conjugation and macrocyclic aromaticity in a wide variety of porphyrinoids.
Figure
Main macrocyclic conjugation pathway and bond resonance energies in units of |β|  相似文献   

3.
The interactions between oxaloacetic (OAA) and phosphoenolpyruvic carboxykinase (PEPCK) binding pocket in the presence and absence of hydrazine were carried out using quantum chemical calculations, based on the two-layered ONIOM (ONIOM2) approach. The complexes were partially optimized by ONIOM2 (B3LYP/6-31G(d):PM6) method while the interaction energies between OAA and individual residues surrounding the pocket were performed at the MP2/6-31G(d,p) level of theory. The calculated interaction energies (INT) indicated that Arg87, Gly237, Ser286, and Arg405 are key residues for binding to OAA with the INT values of ?1.93, ?2.06, ?2.47, and ?3.16 kcal mol?1, respectively. The interactions are mainly due to the formation of hydrogen bonding interactions with OAA. Moreover, using ONIOM2 (B3LYP/6-31G(d):PM6) applied on the PEPCKHS complex, two proton transfers were observed; first, the proton was transferred from the carboxylic group of OAA to hydrazine while the second one was from Asp311 to Lys244. Such reactions cause the generation of binding strength of OAA to the pocket via electrostatic interaction. The orientations of Lys243, Lys244, His264, Asp311, Phe333, and Arg405 were greatly deviated after hydrazine incorporation. These indicate that hydrazine plays an important role in terms of not only changing the conformation of the binding pocket, but is also tightly bound to OAA resulting in its conformation change in the pocket. The understanding of such interaction can be useful for the design of hydrazine-based inhibitor for antichachexia agents.
Figure
Backbone superimposition of PEPCK-OAA complexes with (color by element) and without (yellow) inclusion of hydrazine demonstrated the change of binding pocket could inhibit the chemical reaction. The key interactions are based on Arg87 and Lys244 through hydrogen bonding formation with OAA  相似文献   

4.
Azinomycin B—a well-known antitumor drug—forms cross-links with DNA through alkylation of purine bases and blocks tumor cell growth. This reaction has been modeled using the ONIOM (B3LYP/6-31?+?g(d):UFF) method to understand the mechanism and sequence selectivity. ONIOM results have been checked for reliability by comparing them with full quantum mechanics calculations for selected paths. Calculations reveal that, among the purine bases, guanine is more reactive and is alkylated by aziridine ring through the C10 position, followed by alkylation of the epoxide ring through the C21 position of Azinomycin B. While the mono alkylation is controlled kinetically, bis-alkylation is controlled thermodynamically. Solvent effects were included using polarized-continuum-model calculations and no significant change from gas phase results was observed.
Figure
Insights into the cross-linking mechanism of azinomycin B with DNA bases from hybrid QM/MM Computations  相似文献   

5.
The present work reports a series of novel cationic fullerene derivatives bearing a substituted-quinazolinone moiety as a side arm. Fullerene-quinazolinone conjugates synthesized using the 1,3-dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinone were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and ESI-MS and screened for their antibacterial activity against Mycobacterium tuberculosis (H 37 Rv strain). All the compounds exhibited significant activity with the most effective having MIC in the range of 1.562–3.125 μg/mL. Compound 9f exhibited good biological activity compared to standard drugs. We developed a computational strategy based on the modeled M. tuberculosis hypoxanthine-guanine phosphoribosyltransferase (HGPRT) using homology modeling techniques and studied its binding pattern with synthesized fullerene derivatives. We then explored the surface geometry of the protein to place the cage adjacent to the active site while optimizing its quinazolinone side arm to establish H bonding with active site residues.
Figure
Cationic derivatives of fullerene-quinazolinone conjugates and their docked poses in Modelied M. tuberculosis HGPRT enzyme  相似文献   

6.
7.
Jacalin (Artocarpus integrifolia agglutinin) specifically recognizes thetumor-associated T-antigenic disaccharide structure,Gal13GalNAc. Porphyrins and their derivatives are currently used asphotosensitizers in photodynamic therapy to treat malignant tumors. In thisstudy, the interaction of several free base porphyrins and their metalderivatives with jacalin is investigated by absorption and fluorescencespectroscopy. Each lectin subunit was found to bind one porphyrin moleculeand the association constants were estimated to be in the range of2.4×103M–1 to 1.3×105M–1 at room temperaturefor the interaction of different porphyrins with jacalin. These values arein the same range as those obtained for the interaction of monosaccharidesto jacalin. Both free lectin and lectin saturated with the specificsaccharide were found to bind different porphyrins with comparable bindingstrength indicating that porphyrin binding takes place at a site differentfrom the sugar binding site. Further, both anionic and cationic porphyrinswere found to interact with the lectin with comparable affinity, clearlyindicating that the charge on the porphyrin does not play any role in thebinding process and that most likely the interaction is mediated byhydrophobic forces. These results suggest that jacalin and other lectins maypotentially be useful for targeted delivery of porphyrins to tumor tissuesin photodynamic therapy.  相似文献   

8.
Density functional theory calculations were performed to investigate the adsorption and hydration of an ammonium ion (NH4 +) confined in the interlayer space of montmorillonites (MMT). NH4 + is trapped in the six-oxygen-ring on the internal surface and forms a strong binding with the surface O atoms. The hydration of NH4 + is affected significantly by the surface. Water molecules prefer the surface sites, and do not bind with the NH4 + unless enough water molecules are supplied. Moreover, the water molecules involved in NH4 + hydration tend to bind with the surface simultaneously. The hydration energy increases with the intercalated water molecules, in contrast to that in gas phase. In addition, the hydration leads to the extension of MMT basal spacing.
Figure
Hydrated ammonium ion inside montmorillonite  相似文献   

9.
N6-methyladenine (m6A) is a rare base naturally occurring in DNA. It is different from the base adenine due to its N-CH3. Therefore, the base not only pairs with thymine, but also with other DNA bases (cytosine, adenine and guanine). In this work, Møller-Plesset second-order (MP2) method has been used to investigate the binding mechanism between m6A and natural DNA bases in gas phase and in aqueous solution. The results show that N-CH3 changed the way of N6-methyladenine binding to natural DNA bases. The binding style significantly influences the stability of base pairs. The trans-m6A:G and trans-m6A:C conformers are the most stable among all the base pairs. The existence of solvent can remarkably reduce the stability of the base pairs, and the DNA bases prefer pairing with trans-m6A to cis-m6A. Besides, the properties of these hydrogen bonds have been analyzed by atom in molecules (AIM) theory, natural bond orbital (NBO) analysis and Wiberg bond indexes (WBI). In addition, pairing with m6A decreases the binding energies compared to the normal Watson-Crick base pairs, it may explain the instability of the N6 site methylated DNA in theory.
Figure
Figure The most stable configurations of the base pairs  相似文献   

10.
The potential energy surfaces of the reactions of organometallic arene complexes of the type [(η 6-arene)MII(pic)Cl] (where pic = 2-picolinic acid, M = Ru or Os) were examined by a DFT computational study. Among the seven density functional methods, hybrid exchange functional B3LYP outperforms the others to explain the aquation of the complexes. The reactions and binding energies of RuII and OsII arene complexes with both 9EtG and 9EtA were studied to gain insight into the reactivity of these types of organometallic complexes with DNA. The obtained data rationalize experimental observation, contributing to partly understanding the potential biological and medical applications of organometallic complexes.
Figure
Reactions of [(η 6-arene)MII(pic)Cl] (M = Ru and Os)  相似文献   

11.
We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of ?96.16 kJ?mol?1 and a B–O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature.
Figure
First-principles calculations predict that acetone is strongly bound to the outer surfaces of BNNTs with a binding energy of ?107.14 kJ?mol?1. Comparison with the corresponding adsorption on CNTs reveals that the ability of BNNTs to adsorb acetone is about threefold that of CNTs.  相似文献   

12.
The preliminary cytotoxic effect of 4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide hydrochloride (1)—a potent topoisomerase II inhibitor—was measured using a MTT assay. It was found that the compound decreased the number of viable cells in both estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231breast cancer cells, with IC50 values of 146?±?2 and 132?±?2 μM, respectively. To clarify the molecular basis of the inhibitory action of 1, molecular docking studies were carried out. The results suggest that 1 targets the ATP binding pocket.
Figure
4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide hydrochloride  相似文献   

13.
Selective inhibition of the nitric oxide synthase isoforms (NOS) is a promising approach for the treatment of various disorders. However, given the high active site conservation among all NOS isoforms, the design of selective inhibitors is a challenging task. Analysis of the X-ray crystal structures of the NOS isoforms complexed with known inhibitors most often gives no clues about the structural determinants behind the selective inhibition since the inhibitors share the same binding conformation. Aimed at a better understanding of the structural factors responsible for selective inhibition of NOS isoforms we have performed MD simulations for iNOS, nNOS and eNOS complexed with Nω-NO2-L-Arg (1), and with the aminopyridine derivatives 2 and 3. The slightly better selectivity of 1 for nNOS may be assigned to the presence of extra charge–charge interactions due to its “extended” conformation. While the high affinity of 2 for iNOS can be explained by the formation of an iNOS-specific subpocket upon binding, the lack of affinity for eNOS is associated to a conformational change in Glu363. The strong van der Waals and electrostatic interactions between 3 and the active site of nNOS are most likely responsible for its higher affinity for this isoform. Owing to the elongated and narrow binding pocket of iNOS, the correct positioning of 3 over the heme group is difficult, which may account for its lower affinity toward this isoform. Brought together, our results might help to rationalize the design of selective NOS inhibitors.
Figure
Overall RMSD of the protein backbone over 8 ns simulation is shown for the complexes 3:eNOSmonomer and 3:eNOSdimer  相似文献   

14.
  • 1.1. The kinetics of porphyrin accumulation in cultured mammalian epithelial cells (CNCM-I-221) during exposure to ALA was investigated.
  • 2.2. The total porphyrin synthesized is a function of ALA concentration and the incubation time. The cellular porphyrin content exhibited a saturation pattern, reaching a plateau at about 0.04 fmol porphyrins/cell. A biphasic time-dependent increase in the total porphyrin synthesized was observed.
  • 3.3. After 3 hr of exposure to ALA the rate of synthesis increased to ahnost twice the initial rate, reaching between 0.02 and 0.05 fmol porphyrins/cell/hr depending on serum concentration in the medium.
  • 4.4. Two effects of FBS on ALA-stimulated porphyrin accumulation were observed. Greater total porphyrin synthesis was found when incubations were made in 10% FBS compared to those in 1% FBS.
  • 5.5. The higher serum concentration also caused a greater release into the medium of the porphyrins generated in the cells with a calculated half-life of 24 min in 10% serum-supplemented medium compared with 62 min in 1% serum.
  • 6.6. The results obtained from cell synchronization experiments suggest that there is little obvious cell cycle-dependent variation in the synthesis of porphyrins from ALA.
  • 7.7. The small differences in the intracellular porphyrin content that were observed may be attributed to a slight reduction in the rate of loss of porphyrins in G2/M cells.
  相似文献   

15.
Quantum chemical calculations were performed for LiNH2–HMgX (X?=?H, F, Cl, Br, CH3, OH, and NH2) complexes to propose a new interaction mechanism between them. This theoretical survey showed that the complexes are stabilized through the combinative interaction of magnesium and lithium bonds. The binding energies are in the range of 63.2–66.5 kcal mol?1, i.e., much larger than that of the lithium bond. Upon complexation, both Mg–H and Li–N bonds are lengthened. Substituents increase Mg-H bond elongation and at the same time decrease Li-N bond elongation. These cyclic complexes were characterized with the presence of a ring critical point and natural population analysis charges.
Figure
A new interaction mechanism has been suggested for the LiNH2-HMgH complex. It was found that the combinative interaction of magnesium and lithium bonds is responsible for the stability of the complex. The effect of subsitutents on its stability has also been investigated  相似文献   

16.
The crowned coumarin complexes are well known compounds for their ion recognition abilities. They undergo photophysical changes upon cation binding. On the basis of density functional theory calculations, we examined the sodium cation (Na+) binding energies of coumarin-crown ethers based on 15-Crown-5 (15 C5) and 18-Crown-6 (18 C6) as well as the optical absorptions of coumarin-crown ethers based on 12-Crown-4 (12 C4), 15 C5 and 18 C6. We explored why the attachment of crown ether ring to coumarin affects the Na+ binding energies of coumarin-crown ethers and also why the optical absorption of coumarin is modified by the crown ethers. Our study reveals that the Na+ ion binding energies of coumarin-crown ethers depend strongly on the size of the crown ether ring and also on the attachment position of the ether ring on coumarin. These factors affect the intramolecular charge transfer and overall stability of the complexes. The absorptions of the coumarin and ether ring parts of coumarin-crown ether are red shifted from those of isolated coumarin and crown ether, respectively. The red-shift of the coumarin ester group absorption is much stronger depending on the attachment position of the ether ring to coumarin. The absorption intensity of the coumarin part in coumarin-crown ethers is reduced for the benzene group absorption, but is enhanced for the ester group absorption.
Figure
In this study, the several Na+ - coumarin-crown ether coordination complexes based on 12-Crown-4, 15-Crown-5 and 18-Crown-6 were examined by the density functional theory method. The structural effects on the Na+ binding energies and optical properties were studied.  相似文献   

17.
Two BODIPY derivatives for Cu2+ ion chemosensors containing 4-[2-(diethylamino)-2-oxoethoxy]phenyl (BDP1) and 3,4-bis[2-(diethylamino)-2-oxoethoxy]phenyl (BDP2) were synthesized by coupling appropriate N,N-diethyl-2-(4-formylphenoxy)acetamide and 2,4-dimethylpyrrole moieties in the presence of trifluoroacetic acid and anhydrous dichloromethane at room temperature. The binding abilities between these chemosensors and 50 equivalents of Na+, K+, Ag+, Ca2+, Fe2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions were studied using UV-vis and fluorescence spectrophotometry. The results show that, compared to other ions, both the UV-vis absorption and fluorescence emission intensity of BDP2 decreased dramatically when Cu2+ ion was added. To explain this behavior, ab initio quantum chemical calculations were performed using correlated second-order Møller-Plesset perturbation theory (MP2/LanL2DZ). The calculated orbital energies indicated that the decrease in UV-vis absorption intensity and the quenching of fluorescene emission were due to the single-electron reduction of Cu2+ to Cu+ ion.
Figure
Optimized structure, fluorescent spectra, frontier orbital energy diagrams and electron-transfer paths in receptor BDP2 before and after attachment to Cu2+ ion  相似文献   

18.
In our quest to explore molecules with chemically significant regions where the Fukui function is negative, we explored reactions where the frontier orbital that indicates the sites for electrophilic attack is not the highest occupied molecular orbital. The highest occupied molecular orbital (HOMO) controls the location of the regions where the Fukui function is negative, supporting the postulate that negative values of the Fukui function are associated with orbital relaxation effects and nodal surfaces of the frontier orbitals. Significant negative values for the condensed Fukui function, however, were not observed.
Figure
The ?10?5isosurface of $ {f^{-}}\left( \mathbf{r} \right) $ (opaque silver surface) traces the nodal regions of the HOMO (translucent colored lobes, with different colors for different phases) of the phenoxide anion  相似文献   

19.
20.
Two BODIPY derivative sensors for metal ion recognition containing 10-(4-hydroxyphenyl) (L1) and 10-(3,4-dihydroxyphenyl) (L2) were synthesized in a one-pot reaction of benzaldehyde derivative and 2,4-dimethylpyrrole in the presence of trifluoroacetic acid as catalyst. The binding abilities between these sensors and 50 equivalents of Na+, K+, Ag+, Ca2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, Al3+ and Cr3+ ions were studied using UV–vis and fluorescent spectroscopic methods. Of all the metal ions tested, Al3+ ion showed the greatest decrease in intensity in the spectra of the sensors, and therefore Al3+ ion forms the strongest complex. The binding abilities of BODIPY receptors with Na+, Ag+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+ and Al3+ ions were also investigated using density functional theory (DFT) calculations at B3LYP/LanL2DZ theoretical level. The calculated results point to the same conclusion. DFT calculations also provided the HOMO–LUMO energy levels, which can explain the spectrum change upon complexation.
Figure
Graphical structure, fluorescent spectra, frontier orbital energy diagrams and electron-transfer paths in sensor L1, and after attachment with Al3+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号