首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, no studies have examined whether there are either sex- or ovarian hormone-related alterations in arterial baroreflex resetting and function during dynamic exercise. Thus we studied 16 young men and 18 young women at rest and during leg cycling at 50% heart rate (HR) reserve. In addition, 10 women were studied at three different phases of the menstrual cycle. Five-second pulses of neck pressure (NP) and neck suction (NS) from +40 to -80 Torr were applied to determine full carotid baroreflex (CBR) stimulus response curves. An upward and rightward resetting of the CBR function curve was observed during exercise in all groups with a similar magnitude of CBR resetting for mean arterial pressure (MAP) and HR between sexes (P > 0.05) and at different phases of the menstrual cycle (P > 0.05). For CBR control of MAP, women exhibited augmented pressor responses to NP at rest and exercise during mid-luteal compared with early and late follicular phases. For CBR control of HR, there was a greater bradycardic response to NS in women across all menstrual cycle phases with the operating point (OP) located further away from centering point (CP) on the CBR-HR curve during rest (OP-CP; in mmHg: -13 ± 3 women vs. -3 ± 3 men; P < 0.05) and exercise (in mmHg: -31 ± 2 women vs. -15 ± 3 men; P < 0.05). Collectively, these findings suggest that sex and fluctuations in ovarian hormones do not influence exercise resetting of the baroreflex. However, women exhibited greater CBR control of HR during exercise, specifically against acute hypertension, an effect that was present throughout the menstrual cycle.  相似文献   

2.
Recent investigations have demonstrated that at the onset of low-to-moderate-intensity leg cycling exercise (L) the carotid baroreflex (CBR) was classically reset in direct relation to the intensity of exercise. On the basis of these data, we proposed that the CBR would also be classically reset at the onset of moderate- to maximal-intensity L exercise. Therefore, CBR stimulus-response relationships were compared in seven male volunteers by using the neck pressure-neck suction technique during dynamic exercise that ranged in intensity from 50 to 100% of maximal oxygen uptake (VO(2 max)). L exercise alone was performed at 50 and 75% VO(2 max), and L exercise combined with arm (A) exercise (L + A) was performed at 75 and 100% VO(2 max). O(2) consumption and heart rate (HR) increased in direct relation with the increases in exercise intensity. The threshold and saturation pressures of the carotid-cardiac reflex at 100% VO(2 max) were >75% VO(2 max), which were in turn >50% VO(2 max) (P < 0.05), without a change in the maximal reflex gain (G(max)). In addition, the HR response value at threshold and saturation at 75% VO(2 max) was >50% VO(2 max) (P < 0.05) and 100% VO(2 max) was >75% VO(2 max) (P < 0.07). Similar changes were observed for the carotid-vasomotor reflex. In addition, as exercise intensity increased, the operating point (the prestimulus blood pressure) of the CBR was significantly relocated further from the centering point (G(max)) of the stimulus-response curve and was at threshold during 100% VO(2 max). These findings identify the continuous classic rightward and upward resetting of the CBR, without a change in G(max), during increases in dynamic exercise intensity to maximal effort.  相似文献   

3.
We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 +/- 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O(2) uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 +/- 2.7 to 118.7 +/- 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 +/- 14% (P < 0.01). However, despite the marked increases in MAP and MSNA during exercise, CBR-Delta%MSNA responses elicited by the application of various levels of neck pressure and neck suction ranging from +45 to -80 Torr were not significantly different from those at rest. Furthermore, estimated baroreflex sensitivity for the control of MSNA at rest was the same as during exercise (P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.  相似文献   

4.
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained.  相似文献   

5.
The present investigation was designed to uncouple the hemodynamic physiological effects of thermoregulation from the effects of a progressively increasing central command activation during prolonged exercise. Subjects performed two 1-h bouts of leg cycling exercise with 1) no intervention and 2) continuous infusion of a dextran solution to maintain central venous pressure constant at the 10-min pressure. Volume infusion resulted in a significant reduction in the decrement in mean arterial pressure seen in the control exercise bout (6.7 +/- 1.8 vs. 11.6+/- 1.3 mmHg, respectively). However, indexes of central command such as heart rate and ratings of perceived exertion rose to a similar extent during both exercise conditions. In addition, the carotid-cardiac baroreflex stimulus-response relationship, as measured by using the neck pressure-neck suction technique, was reset from rest to 10 min of exercise and was further reset from 10 to 50 min of exercise in both exercise conditions, with the operating point being shifted toward the reflex threshold. We conclude that the progressive resetting of the carotid baroreflex and the shift of the reflex operating point render the carotid-cardiac reflex ineffectual in counteracting the continued decrement in mean arterial pressure that occurs during the prolonged exercise.  相似文献   

6.
The purpose of this study was to examine the hypothesis that the operating point of the cardiopulmonary baroreflex resets to the higher cardiac filling pressure of exercise associated with the increased cardiac filling volumes. Eight men (age 26 +/- 1 yr; height 180 +/- 3 cm; weight 86 +/- 6 kg; means +/- SE) participated in the present study. Lower body negative pressure (LBNP) was applied at 8 and 16 Torr to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak oxygen uptake (104 +/- 20 W). Subsequently, two discrete infusions of 25% human serum albumin solution were administered until CVP was increased by 1.8 +/- 0.6 and 2.4 +/- 0.4 mmHg at rest and 2.9 +/- 0.9 and 4.6 +/- 0.9 mmHg during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, forearm blood flow and cardiac output were measured. During exercise, forearm vascular conductance increased from 7.5 +/- 0.5 to 8.7 +/- 0.6 U (P = 0.024) and total systemic vascular conductance from 7.2 +/- 0.2 to 13.5 +/- 0.9 l.min(-1).mmHg(-1) (P < 0.001). However, there was no significant difference in the responses of both forearm vascular conductance and total systemic vascular conductance to LBNP and the infusion of albumin between rest and exercise. These data indicate that the cardiopulmonary baroreflex had been reset during exercise to the new operating point associated with the exercise-induced change in cardiac filling volume.  相似文献   

7.
To examine the influence of light exercise on cardiac responses during recovery from exercise, we measured heart rate (HR), stroke volume (SV), and cardiac output ( c) in five healthy untrained male subjects in an upright position before, during, and after 10-min steady-state cycle exercise at an exercise intensity of 170 W, corresponding to a mean of 68 (SD 4)% of maximal oxygen uptake. The recovery phase was evaluated separately for three different conditions: 10 min of complete rest (passive recovery), 7 min of pedalling at 20-W exercise intensity followed by 3 min of rest (partially active recovery), and 7 min of pedalling at 40-W exercise intensity followed by 3 min of rest (partially active recovery), on an upright cycle ergometer. The time courses of decreases in HR in the two active recovery phases at different exercise intensities were almost identical to those in the passive recovery phase. However, the subsequent HR reductions during the rest after active recovery at 20 W and at 40 W were mean 7.5 (SD 4.4) and mean 10.0 (SD 3.1) beats · min−1, respectively, both of which were significantly larger (P<0.05 and P<0.005) than the corresponding reduction [1.4 (SD 2.5) beats · min−1] for passive recovery. The SV values at the two exercise intensities during the active recovery periods were maintained at levels similar to that during 170-W steady-state exercise. In contrast, the SV during passive recovery decreased gradually to a level significantly below the initial baseline level at rest before exercise (P<0.05). The resultant time courses of CO values during active recovery were significantly higher (each P<0.05) than that during passive recovery. It was concluded from these findings that light post-exercise physical activity plays an important role in facilitating the venous return from the muscles and in restoring the elevated HR to the pre-exercise resting level. Accepted: 17 September 1997  相似文献   

8.
Muscle sympathetic nerve activity (MSNA) and arterial pressure increase concomitantly during apnea, suggesting a possible overriding of arterial baroreflex inhibitory input to sympathoregulatory centers by apnea-induced excitatory mechanisms. Apnea termination is accompanied by strong sympathoinhibition while arterial pressure remains elevated. Therefore, we hypothesized that the sensitivity of carotid baroreflex control of MSNA would decrease during apnea and return upon apnea termination. MSNA and heart rate responses to -60-Torr neck suction (NS) were evaluated during baseline and throughout apnea. Responses to +30-Torr neck pressure (NP) were evaluated during baseline and throughout 1 min postapnea. Apnea did not affect the sympathoinhibitory or bradycardic response to NS (P > 0.05); however, whereas the cardiac response to NP was maintained postapnea, the sympathoexcitatory response was reduced for 50 s (P < 0.05). These data demonstrate that the sensitivity of carotid baroreflex control of MSNA is not attenuated during apnea. We propose a transient rightward and upward resetting of the carotid baroreflex-MSNA function curve during apnea and that return of the function curve to, or more likely beyond, baseline (i.e., a downward and leftward shift) upon apnea termination may importantly contribute to the reduced sympathoexcitatory response to NP.  相似文献   

9.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

10.
Arterial blood pressure (BP) is regulated via the interaction of various local, humoral, and neural factors. In humans, the major neural pathway for acute BP regulation involves the baroreflexes. In response to baroreceptor activation/deactivation, as occurs during transient changes in BP, key determinants of BP, such as cardiac period/heart rate (via the sympathetic and parasympathetic nervous system) and vascular resistance (via the sympathetic nervous system), are modified to maintain BP homeostasis. In this review, the effects of aging on both the parasympathetic and sympathetic arms of the baroreflex are discussed. Aging is associated with decreased cardiovagal baroreflex sensitivity (i.e., blunted reflex changes in R-R interval in response to a change in BP). Mechanisms underlying this decrease may involve factors such as increased levels of oxidative stress, vascular stiffening, and decreased cardiac cholinergic responsiveness with age. Consequences of cardiovagal baroreflex impairment may include increased levels of BP variability, an impaired ability to respond to acute challenges to the maintenance of BP, and increased risk of sudden cardiac death. In contrast, baroreflex control of sympathetic outflow is not impaired with age. Collectively, changes in baroreflex function with age are associated with an impaired ability of the organism to buffer changes in BP. This is evidenced by the reduced potentiation of the pressor response to bolus infusion of a pressor drug after compared to before systemic ganglionic blockade in older compared with young adults.  相似文献   

11.
We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (-3.08 +/- 0.5 vs. -5.14 +/- 0.6 beats.min(-1).mmHg(-1); P < 0.05) and CO-LVSP (-134.74 +/- 24.5 vs. -208.6 +/- 22.2 ml.min(-1).mmHg(-1); P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 +/- 2.8% vs. 52.3 +/- 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.  相似文献   

12.
Isometric exercise modifies autonomic baroreflex responses in humans   总被引:3,自引:0,他引:3  
The influence of brief, moderate isometric exercise on the earliest vagal and sympathetic responses to changes of afferent carotid baroreceptor activity was studied in 10 healthy young men and women. Vagal-cardiac nerve activity was estimated from changes of electrocardiographic R-R intervals, and postganglionic peroneal nerve muscle sympathetic activity was measured directly from microneurographic recordings. Carotid baroreceptor activity was altered with 5-s periods of 30 Torr pressure or suction applied to a neck chamber during held expiration. Brief handgrip (30% of maximum) significantly reduced base-line R-R intervals, did not modify reductions of R-R intervals during neck pressure, and significantly reduced increases of R-R intervals during neck suction. Handgrip did not significantly increase base-line sympathetic activity from resting levels, but it significantly diminished increases of sympathetic activity during neck pressure and augmented reductions of sympathetic activity during neck suction. Our results suggest that exercise modifies, in small but significant ways, early sympathetic and vagal responses to abrupt changes of arterial baroreceptor input in humans.  相似文献   

13.
14.
15.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.  相似文献   

16.
Previous studies showed that the arterial baroreflex opposes the pressor response mediated by muscle metaboreflex activation during mild dynamic exercise. However, no studies have investigated the mechanisms contributing to metaboreflex-mediated pressor responses during dynamic exercise after arterial baroreceptor denervation. Therefore, we investigated the contribution of cardiac output (CO) and peripheral vasoconstriction in mediating the pressor response to graded reductions in hindlimb perfusion in conscious, chronically instrumented dogs before and after sinoaortic denervation (SAD) during mild and moderate exercise. In control experiments, the metaboreflex pressor responses were mediated via increases in CO. After SAD, the metaboreflex pressor responses were significantly greater and significantly smaller increases in CO occurred. During control experiments, nonischemic vascular conductance (NIVC) did not change with muscle metaboreflex activation, whereas after SAD NIVC significantly decreased with metaboreflex activation; thus SAD shifted the mechanisms of the muscle metaboreflex from mainly increases in CO to combined cardiac and peripheral vasoconstrictor responses. We conclude that the major mechanism by which the arterial baroreflex buffers the muscle metaboreflex is inhibition of metaboreflex-mediated peripheral vasoconstriction.  相似文献   

17.
The neural interaction between the cardiopulmonary and arterial baroreflex may be critical for the regulation of blood pressure during orthostatic stress. However, studies have reported conflicting results: some indicate increases and others decreases in cardiac baroreflex sensitivity (i.e., gain) with cardiopulmonary unloading. Thus the effect of orthostatic stress-induced central hypovolemia on regulation of heart rate via the arterial baroreflex remains unclear. We sought to comprehensively assess baroreflex function during orthostatic stress by identifying and comparing open- and closed-loop dynamic cardiac baroreflex gains at supine rest and during 60° head-up tilt (HUT) in 10 healthy men. Closed-loop dynamic "spontaneous" cardiac baroreflex sensitivities were calculated by the sequence technique and transfer function and compared with two open-loop carotid-cardiac baroreflex measures using the neck chamber system: 1) a binary white-noise method and 2) a rapid-pulse neck pressure-neck suction technique. The gain from the sequence technique was decreased from -1.19 ± 0.14 beats·min(-1)·mmHg(-1) at rest to -0.78 ± 0.10 beats·min(-1)·mmHg(-1) during HUT (P = 0.005). Similarly, closed-loop low-frequency baroreflex transfer function gain was reduced during HUT (P = 0.033). In contrast, open-loop low-frequency transfer function gain between estimated carotid sinus pressure and heart rate during white-noise stimulation was augmented during HUT (P = 0.01). This result was consistent with the maximal gain of the carotid-cardiac baroreflex stimulus-response curve (from 0.47 ± 0.15 beats·min(-1)·mmHg(-1) at rest to 0.60 ± 0.20 beats·min(-1)·mmHg(-1) at HUT, P = 0.037). These findings suggest that open-loop cardiac baroreflex gain was enhanced during HUT. Moreover, under closed-loop conditions, spontaneous baroreflex analyses without external stimulation may not represent open-loop cardiac baroreflex characteristics during orthostatic stress.  相似文献   

18.
The delay τ between rising systolic blood pressure (SBP) and baroreflex bradycardia has been found to increase when vagal tone is low. The α(2)-agonist clonidine increases cardiac vagal tone, and this study tested how it affects τ. In eight conscious supine human volunteers clonidine (6 μg/kg po) reduced τ, assessed both by cross correlation baroreflex sensitivity and sequence methods (both P < 0.05). Experiments on urethane-anaesthetized rats reproduced the phenomenon and investigated the underlying mechanism. Heart rate (HR) responses to increasing SBP produced with an arterial balloon catheter showed reduced τ (P < 0.05) after clonidine (100 μg/kg iv). The central latency of the reflex was unaltered, however, as shown by the unchanged timing with which antidromically identified cardiac vagal motoneurons (CVM) responded to the arterial pulse. Testing the latency of the HR response to brief electrical stimuli to the right vagus showed that this was also unchanged by clonidine. Nevertheless, vagal stimuli delivered at a fixed time in the cardiac cycle (triggered from the ECG R-wave) slowed HR with a 1-beat delay in the baseline state but a 0-beat delay after clonidine (n = 5, P < 0.05). This was because clonidine lengthened the diastolic period, allowing the vagal volleys to arrive at the heart just in time to postpone the next beat. Calculations indicate that naturally generated CVM volleys in both humans and rats arrive around this critical time. Clonidine thus reduces τ not by changing central or efferent latencies but simply by slowing the heart.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号