首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transforming growth factor beta signaling mediators and modulators   总被引:24,自引:0,他引:24  
Zimmerman CM  Padgett RW 《Gene》2000,249(1-2):17-30
  相似文献   

4.
Cell growth and differentiation in developing tissues are, at first impression, quite different endeavors from readjusting synaptic strength during activity-dependent synaptic plasticity in mature neurons. Nevertheless, it is becoming increasingly clear that these two distinct processes share multiple intracellular signaling events. How these common pathways result in cell division (during proliferation), large-scale cellular remodeling (during differentiation) or synapse-specific changes (during synaptic plasticity) is only starting to be elucidated. Here we review the latest findings on two prototypical examples of these shared mechanisms: the Ras-PI3K pathway and the intracellular signaling elicited by neural cell adhesion molecules interacting with growth factor receptors.  相似文献   

5.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

6.
7.
Transforming growth factor beta (TGFbeta) interacts with cell surface receptors to initiate a signaling cascade critical in regulating growth, differentiation, and development of many cell types. TGFbeta signaling involves activation of Smad proteins which directly regulate target gene expression. Here we show that Smad proteins also regulate gene expression by using a previously unrecognized pathway involving direct interaction with protein kinase A (PKA). PKA has numerous effects on growth, differentiation, and apoptosis, and activation of PKA is generally initiated by increased cellular cyclic AMP (cAMP). However, we found that TGFbeta activates PKA independent of increased cAMP, and our observations support the conclusion that there is formation of a complex between Smad proteins and the regulatory subunit of PKA, with release of the catalytic subunit from the PKA holoenzyme. We also found that the activation of PKA was required for TGFbeta activation of CREB, induction of p21(Cip1), and inhibition of cell growth. Taken together, these data indicate an important and previously unrecognized interaction between the TGFbeta and PKA signaling pathways.  相似文献   

8.
9.
The epidermal growth factor (EGF) and transforming growth factor beta (TGFbeta) families of signaling molecules play a major role in growth and development of embryos. Abrogation of either signaling pathway results in defects in embryogenesis, including cleft palate. In the developing palate, both EGF and TGFbeta regulate cellular proliferation, extracellular matrix synthesis, and cellular differentiation but often in an opposing manner. Evidence from various adult cell types suggests the existence of cross talk between the EGF and TGFbeta signaling pathways, although it is unclear whether such cross talk exists in murine embryonic maxillary mesenchymal cells, from which the developing palate is derived. In this study, embryonic maxillary mesenchymal cells in culture were treated with EGF and TGFbeta, either singly or in combination, and the cells were subsequently examined for signaling interactions between these two pathways. Immunoblot analyses of nuclear extracts of embryonic maxillary mesenchymal cells revealed that TGFbeta-induced nuclear translocation of Smad 2 and Smad 3 proteins was not affected by EGF. Conversely, immunoblot analyses of whole-cell extracts of these cells indicated that EGF-induced phosphorylation of extracellular signal-regulated kinase proteins, ERK1 and ERK2, was not affected by TGFbeta. Expression of a transfected luciferase reporter gene driven by a promoter with Smad binding elements was induced by TGFbeta in these cells but was not affected by EGF. Last, TGFbeta was found to induce expression of the endogenous gelatinase B gene in embryonic maxillary mesenchymal cells; however, this effect was independent of any interaction of EGF. Collectively, data from this study suggest that the EGF and TGFbeta signal transduction pathways do not converge in murine embryonic maxillary mesenchymal cells.  相似文献   

10.
Wang S  Shen Y  Yuan X  Chen K  Guo X  Chen Y  Niu Y  Li J  Xu RH  Yan X  Zhou Q  Ji W 《The Journal of biological chemistry》2008,283(51):35929-35940
The pluripotency and self-renewal of embryonic stem cells (ESC) are regulated by a variety of cytokines/growth factors with some species differences. We reported previously that rabbit ESC (rESC) are more similar to primate ESC than to mouse ESC. However, the signaling pathways that regulate rESC self-renewal had not been identified. Here we show that inhibition of the transforming growth factor beta (TGFbeta), fibroblast growth factor (FGF), and canonical Wnt/beta-catenin (Wnt) pathways results in enhanced differentiation of rESC accompanied by down-regulation of Smad2/3 phosphorylation and beta-catenin expression and up-regulation of phosphorylation of Smad1 and beta-catenin. These results imply that the TGFbeta, FGF, and Wnt pathways are required for rESC self-renewal. Inhibition of the MAPK/ERK and PI3K/AKT pathways, which lie downstream of the FGF pathway, led to differentiation of rESC accompanied by down-regulation of phosphorylation of ERK1/2 or AKT, respectively. Long-term self-renewal of rESC could be achieved by adding a mixture of TGFbeta ligands (activin A, Nodal, or TGFbeta1) plus basic FGF (bFGF) and Noggin in the absence of serum and feeder cells. Our findings also suggest that there is a regulatory network consisting of the FGF, Wnt, and TGFbeta pathways that controls rESC pluripotency and self-renewal. We conclude that bFGF controls the stem cell properties of rESC both directly and indirectly through TGFbeta or other pathways, whereas the effect of Wnt on rESC might be mediated by the TGFbeta pathway.  相似文献   

11.
12.
Homeostatic signaling: the positive side of negative feedback   总被引:4,自引:0,他引:4  
Synaptic homeostasis provides a means for neurons and circuits to maintain stable function in the face of perturbations such as developmental or activity-dependent changes in synapse number or strength. These forms of plasticity are thought to utilize negative feedback signaling to sense some aspect of activity, compare this with an internal set point, and then adjust synaptic properties to keep activity close to this set point. However, the molecular identity of these signaling components has not been firmly established. Recent work suggests that there are likely to be multiple forms of synaptic homeostasis, mediated by distinct signaling pathways and with distinct expression mechanisms. These include presynaptic forms that depend on retrograde signaling to presynaptic Ca(2+) channels, and postsynaptic forms influenced by BDNF, TNFalpha and Arc signaling. Current challenges include matching signaling elements to their functions (i.e. as detectors of activity, as part of the set-point mechanism and/or as effectors of synaptic change), and fitting these molecular candidates into a unified view of the signaling pathways that underlie synaptic homeostasis.  相似文献   

13.
14.
15.
16.
Members of the TGFbeta superfamily of growth and differentiation factors, including the TGFbeta, BMP, activin and nodal families, play important signaling roles throughout development. This paper summarizes some of the functions of these ligands in lens development. Targeted deletion of the genes encoding one of the BMP receptors, Alk3 (BMP receptor-1A), showed that signaling through this receptor is essential for normal lens development. Lenses lacking Alk3 were smaller than normal, with thin epithelial layers. The fiber cells of Alk3 null lenses became vacuolated and degenerated within the first week after birth. Lenses lacking Alk3 function were surrounded by abnormal mesenchymal cells, suggesting that the lenses provided inappropriate signals to surrounding tissues. Lens epithelial and fiber cells contained endosomes that were associated with activated (phosphorylated) SMAD1 and SMAD2. Endosomal localization of pSMAD1 was reduced in the absence of Alk3 signaling. The presence of pSMAD2 in lens fiber cell nuclei and the observation that the activin antagonist follistatin inhibited lens cell elongation suggested that an activin-like molecule participates in lens fiber cell differentiation. Lenses deficient in type II TGFbeta receptors were clear and had fiber cells of normal morphology. This suggests that TGFbeta signaling is not essential for the normal differentiation of lens fiber cells. The targeted deletion of single or multiple receptors of the TGFbeta superfamily in the lens should further characterize the role of these signaling molecules in lens development. This approach may also provide a useful way to define the downstream pathways that are activated by these receptors during the development of the lens and other tissues.  相似文献   

17.
18.
19.
Several families of growth factors have been identified as regulators of cell fate in the developing lens. Members of the fibroblast growth factor family are potent inducers of lens fiber differentiation. Members of the transforming growth factor beta (TGFbeta) family, particularly bone morphogenetic proteins, have also been implicated in various stages of lens and ocular development, including lens induction and lens placode formation. However, at later stages of lens development, TGFbeta family members have been shown to induce pathological changes in lens epithelial cells similar to those seen in forms of human subcapsular cataract. Previous studies have shown that type I and type II TGFbeta receptors, in addition to being expressed in the epithelium, are also expressed in patterns consistent with a role in lens fiber differentiation. In this study we have investigated the consequences of disrupting TGFbeta signaling during lens fiber differentiation by using the mouse alphaA-crystallin promoter to overexpress mutant (kinase deficient), dominant-negative forms of either type I or type II TGFbeta receptors in the lens fibers of transgenic mice. Mice expressing these transgenes had pronounced bilateral nuclear cataracts. The phenotype was characterized by attenuated lens fiber elongation in the cortex and disruption of fiber differentiation, culminating in fiber cell apoptosis and degeneration in the lens nucleus. Inhibition of TGFbeta signaling resulted in altered expression patterns of the fiber-specific proteins, alpha-crystallin, filensin, phakinin and MIP. In addition, in an in vitro assay of cell migration, explanted lens cells from transgenic mice showed impaired migration on laminin and a lack of actin filament assembly, compared with cells from wild-type mice. These results indicate that TGFbeta signaling is a key event during fiber differentiation and is required for completion of terminal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号