首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of nitrate and cytokinin on the induction of nitrate reductase (NADH-nitrate oxidoreductase, EC 1.6.6.1) in embryos of Agrostemma githago was compared. Increased enzyme levels in response to treatment with the cytokinin benzyladenine were not correlated with a general stimulation of protein synthesis or a general reduction of protein breakdown. Actinomycin D did not inhibit the formation of nitrate reductase in response to nitrate or the cytokinin. Cycloheximide and puromycin inhibited the induction by the hormone to the same extent as, or even more than, the incorporation of [14C]leucine into protein. Induction of nitrate reductase by nitrate was much less susceptible to inhibition by cycloheximide and puromycin than induction of the enzyme by benzyladenine. When induction of nitrate reductase was carried out in the presence of 2H2O, isopycnic equilibrium centrifugation in CsCl showed that incorporation of 2H into the enzyme had occured. The increase in the buoyant density of nitrate reductase was the same whether the enzyme was induced by nitrate or by benzyladenine, indicating that at least part of the nitrate reductase molecule was newly synthesized in both instances.  相似文献   

2.
Kende H  Hahn H  Kays SE 《Plant physiology》1971,48(6):702-706
Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO3 and cytokinins. We asked the question whether cytokinins affected nitrate reductase activity directly or through NO3, either by amplifying the effect of low endogenous NO3 levels, or by making NO3 available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO3 and benzyladenine, additive responses were obtained. The effects of NO3 and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO3, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO3 was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO3 and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increasd again as a result of a second treatment with benzyladenine but not with NO3. At the time of the second exposure to benzyladenine, no NO3 was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO3.  相似文献   

3.
When excised embryos of Agrostemma githago were incubated with nitrate, the activities of both nitrate reductase and nitrite reductase were enhanced. By contrast, benzyladenine induced nitrate reductase only. Our data suggest that nitrate affected nitrite reductase activity directly, without first being reduced to nitrite. When the endogenous nitrite production was increased by raising the level of nitrate reductase through simultaneous treatment with nitrate and benzyladenine, the activity of nitrite reductase was not higher than in embryos treated with nitrate alone. On the other hand, tungstate given together with nitrate drastically inhibited the development of nitrate reductase activity without reducing the enhancement of nitrite reductase activity. Nitrite enhanced nitrite reductase activity, though less efficiently than nitrate.  相似文献   

4.
Regulation of Nitrate Reductase in Chlorella vulgaris   总被引:4,自引:1,他引:3       下载免费PDF全文
When excised barley roots (Hordeum distichum L.) are appropriately pretreated, the level of nitrate reductase in the roots increases upon exposure to nitrate. Relatively low levels of nitrate (10 μm) gave maximum induction of nitrate reductase. This increase was inhibited by inhibitors of protein and RNA synthesis, indicating that de novo protein synthesis is probably involved. Induction of nitrate reductase by nitrate is partially prevented by the inclusion of ammonium, an eventual product of nitrate reduction, in the incubation medium. Under the experimental conditions used, ammonium did not inhibit the uptake of nitrate by excised barley roots. It is concluded, therefore, that ammonium, or a product of ammonium metabolism, has a direct effect on the synthesis of nitrate reductase in this tissue.  相似文献   

5.
Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically.  相似文献   

6.
The importance of light to the induction of nitrate reductase activity in barley (Hordeum vulgare L.) was studied. Activity in etiolated leaves in darkness stayed at a low endogenous level even while large amounts of nitrate were actively accumulated. Light was required for any increase in activity, though the requirement may be satisfied to a limited extent before nitrate is available. Nitrate reductase activity was induced in the dark in green leaves which had not previously had nitrate but were supplied nitrate at the beginning of the dark period. If the nitrate then made available was sufficient, nitrate reductase activity increased until the effect of the previous light treatment was exhausted. Activity then decreased even though nitrate uptake continued. Upon returning the leaves to light, enzymatic activity increased again, as expected. Nitrate uptake was eliminated as an experimental variable by giving dark-grown plants nitrate, then detaching the leaves for induction studies. Under these conditions light saturation occurred between 3600 and 7700 lux at exemplary periods of illumination. At intensities of 3600 lux and above, activity increased sharply after a 6-hour lag period. As light intensity was decreased below 3600 lux the lag period became longer. Thus, when sufficient nitrate was available, the extent of induction of nitrate reductase activity was regulated by light.  相似文献   

7.
Nitrate reductase (NR) activity and nitrite reductase (NiR) mRNA levels were monitored in Black Mexican Sweet maize (Zea mays L.) suspension cultures after the addition of nitrate. Maximal induction occurred with 20 millimolar nitrate and within 2 hours. Both NR and NiR mRNA were transiently induced with levels decreasing after the 2 hours despite the continued presence of nitrate in the medium. Neither ammonia nor chlorate prevented the induction of NR. Furthermore, removal of nitrate, followed by its readdition 22 to 48 hours later, did not result in reinduction of activity or message. NR was synthesized de novo, since cycloheximide completely blocked its induction. Cycloheximide had no effect on the induction of NiR mRNA or on the transient nature of its induction. These results are similar to those reported previously for maize seedlings.  相似文献   

8.
The in planta induction of anaerobic nitrate respiration by Erwinia carotovora subsp. atroseptica in relation to the in situ oxygen status in soft rotting potato tubers has been investigated. In vitro experiments have shown that nitrate was required for the induction of respiratory nitrate reductase activity in E. carotovora. In addition, oxygen was found to repress this activity. Expression of respiratory nitrate reductase was found in E. carotovora cells extracted from soft rotting potato tuber tissue. However, the rate of nitrite production in these cells was approximately 70-fold lower than the rate recorded in fully induced anaerobic cultures. Oxygen measurements in soft rotting potato tubers indicated that the invading bacteria encounter the lowest oxygen concentration at the interphase between healthy and macerated tissue. Consequently, growth of bacteria present in this specific zone will be stimulated by nitrate which is present in sufficient amounts in tuber tissue. A high nitrate content of the tuber will most likely facilitate the proliferation of E. carotovora in the tuber tissue.  相似文献   

9.
In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities.  相似文献   

10.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

11.
Nitrate uptake and the subsequent induction of in vivo nitratereductase activity in wheat were studied by investigating aeuploid and certain ditelosomic stocks which exhibited in vivoactivity significantly greater than that of the euploid. Thekinetics of nitrate uptake were investigated, but the high activitiesof the ditelosomics were not caused by increased uptake of nitrate,although ditelo-7BL exhibited unusual uptake dynamics. Analysisof the induction of nitrate reductase activity revealed a biphasicgeneral pattern, with an initial rapid phase being followedby a slower but longer period of induction. The induction rateover the second period, although responsible for only a minorproportion of the total activity induced, was positively correlatedwith the final nitrate reductase level, unlike the rate overthe first induction period. Several stocks exhibited high inductionrates over one or other of the two phases, while ditelo- 1 Asshowed an abnormal monophasic induction pattern. At the endof the second period of induction, nitrate reductase activitybecame more or less steady, except for activity fluctuationsassociated with the time of application of induction stimuli.  相似文献   

12.
The influence of protein synthesis and nitrate reductase activity on nitrate absorption by barley (Hordeum vulgare L.) was investigated. Cycloheximide decreased nitrate absorption. Pretreatment studies showed that cycloheximide affects either energy transfer or nitrate reductase activity or both.  相似文献   

13.
Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.  相似文献   

14.
Nitrate transport system in Neurospora crassa   总被引:12,自引:4,他引:8       下载免费PDF全文
Nitrate uptake in Neurospora crassa has been investigated under various conditions of nitrogen nutrition by measuring the rate of disappearance of nitrate from the medium and by determining mycelial nitrate accumulation. The nitrate transport system is induced by either nitrate or nitrite, but is not present in mycelia grown on ammonia or Casamino Acids. The appearance of nitrate uptake activity is prevented by cycloheximide, puromycin, or 6-methyl purine. The induced nitrate transport system displays a Km for nitrate of 0.25 mM. Nitrate uptake is inhibited by metabolic poisons such as 2,4-dinitrophenol, cyanide, and antimycin A. Furthermore, mycelia can concentrate nitrate 50-fold. Ammonia and nitrite are non-competitive inhibitors with respect to nitrate, with Ki values of 0.13 and 0.17 mM, respectively. Ammonia does not repress the formation of the nitrate transport system. In contrast, the nitrate uptake system is repressed by Casamino Acids. All amino acids individually prevent nitrate accumulation, with the exception of methionine, glutamine, and alanine. The influence of nitrate reduction and the nitrate reductase protein on nitrate transport was investigated in wild-type Neurospora lacking a functional nitrate reductase and in nitrate non-utilizing mutants, nit-1, nit-2, and nit-3. These mycelia contain an inducible nitrate transport system which displays the same characteristics as those found in the wild-type mycelia having the functional nitrate reductase. These findings suggest that nitrate transport is not dependent upon nitrate reduction and that these two processes are separate events in the assimilation of nitrate.  相似文献   

15.
Homogeneous nitrate reductase (EC 1.6.6.2) from Monoraphidium braunii was obtained by means of affinity chromatography in blue-Sepharose and gel filtration. After electrophoresis in polyacrylamide, gel slices containing pure nitrate reductase were disrupted and injected into previously unimmunized rabbits. The antiserum produced after several weeks was found to inhibit the different activities of nitrate reductase to a similar degree. Monospecificity of the antiserum was demonstrated by Ouchterlony double diffusion and crossed immunoelectrophoresis. The antibodies were purified by immunoabsorption to Sepharose-bound nitrate reductase.

The intracellular location of nitrate reductase in green algae was examined by applying an immunocytochemical method to M. braunii cells. Ultrathin frozen sections were first treated with immunopurified anti-nitrate reductase monospecific antibodies, followed by incubation with colloidal gold-labeled goat antirabbit immunoglobulin G as a marker. The enzyme was specifically located in the pyrenoid region of the chloroplast.

  相似文献   

16.
Nitrate Reductase and Chlorate Toxicity in Chlorella vulgaris Beijerinck   总被引:3,自引:3,他引:0  
A study of the growth-inhibiting effect of chlorate on the Berlin strain of Chlorella vulgaris Beijerinck provided complete confirmation of the theory of chlorate toxicity first proposed by Åberg in 1947. Chlorate was toxic to the cells growing on nitrate, and relatively nontoxic to the cells growing on ammonium. The latter cells contained only 0.01 as much NADH-nitrate reductase as the nitrate-grown cells. Chlorate could substitute for nitrate as a substrate of the purified nitrate reductase with Km = 1.2 mm, and Vmax = 0.9Vmax for nitrate. Bromate, and to a much smaller extent, iodate, also served as alternate substrates. Nitrate is a reversible competitive inhibitor of chlorate reduction, which accounts for the partial reversal, by high nitrate concentrations, of the observed inhibition of cell growth by chlorate. During the reduction of chlorate by NADH in the presence of purified nitrate reductase, there was a progressive, irreversible inhibition of the enzyme activity, presumably brought about by the reduction product, chlorite. Both the NADH-nitrate reductase activity and the associated NADH-cytochrome c reductase activity were inactivated to the same extent by added chlorite. The spectral properties of the cytochrome b557 associated with the purified enzyme were not affected by chlorite. The inactivation of the nitrate reductase by chlorite could account for the toxicity of chlorate to cells grown on nitrate, though the destruction of other cell components by chlorite or its decomposition products cannot be excluded.  相似文献   

17.
Nitrate Utilization by Nitrate Reductase-deficient Barley Mutants   总被引:6,自引:5,他引:1       下载免费PDF全文
Warner RL 《Plant physiology》1981,67(4):740-743
Two nitrate reductase-deficient barley mutants were studied for growth on nitrate and ammonium sources of nitrogen and for resistance to chlorate. Although nitrate reductase-deficient mutants in some species are chlorate-resistant (unable to reduce chlorate to chlorite), the barley mutants used in these studies when grown on nitrate and treated with chlorate were only slightly more resistant to chlorate than the control. When grown to maturity on vermiculite supplemented with either nitrate or ammonium nutrient solutions, the mutants produced as much dry weight and reduced nitrogen per plant as the control. The in vivo and in vitro nitrate reductase activities in the roots and shoots of the mutants grown on nitrate were consistently less than 10% of the control. To avoid the possibility that the mutants received reduced nitrogen from microbial sources, excised embryos were cultured under sterile conditions. Again the mutants were capable of growth and reduced nitrogen accumulation with nitrate as the sole source of nitrogen. In spite of the low apparent nitrate reductase activity, the nitrate reductase-deficient mutants are capable of substantial nitrate reduction.  相似文献   

18.
Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate.  相似文献   

19.
THE extractable activity of nitrate reductase from higher plant leaves is inducible by light and shows, under natural growth conditions, a pattern of diurnal variation1. Studies on the nature of light involvement have generally used the green leaf as experimental material, implying that photosynthesis supports the induction process1,2. We have examined the role of light for the induction of nitrate reductase activity in the etiolated terminal buds of field peas (Pisum arvense cv. Century). Treatments consisted of brief exposure of intact plants to broad bands of light, followed by a period in darkness before extraction for enzyme assay. These light treatments exclude the possibility of photosynthesis as a process contributing to induction. Under these conditions, induction is shown to be reversibly controlled by red and far red light, an effect ascribable to the pigment phytochrome.  相似文献   

20.
The nitrate reductase activity of 5-day-old whole corn roots was isolated using phosphate buffer. The relatively stable nitrate reductase extract can be separated into three fractions using affinity chromatography on blue-Sepharose. The first fraction, eluted with NADPH, reduces nearly equal amounts of nitrate with either NADPH or NADH. A subsequent elution with NADH yields a nitrate reductase which is more active with NADH as electron donor. Further elution with salt gives a nitrate reductase fraction which is active with both NADH and NADPH, but is more active with NADH. All three nitrate reductase fractions have pH optima of 7.5 and Stokes radii of about 6.0 nanometers. The NADPH-eluted enzyme has a nitrate Km of 0.3 millimolar in the presence of NADPH, whereas the NADH-eluted enzyme has a nitrate Km of 0.07 millimolar in the presence of NADH. The NADPH-eluted fraction appears to be similar to the NAD(P)H:nitrate reductase isolated from corn scutellum and the NADH-eluted fraction is similar to the NADH:nitrate reductases isolated from corn leaf and scutellum. The salt-eluted fraction appears to be a mixture of NAD(P)H: and NADH:nitrate reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号