首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Infection of alfalfa with Rhizobium meliloti exo mutants deficient in exopolysaccharide results in abnormal root nodules that are devoid of bacteria and fail to fix nitrogen. Here we report further characterization of these abnormal nodules. Tightly curled root hairs or shepherd's crooks were found after inoculation with Rm 1021-derived exo mutants, but curling was delayed compared with wild-type Rm 1021. Infection threads were initiated in curled root hairs by mutants as well as by wild-type R. meliloti, but the exo mutant-induced threads aborted within the peripheral cells of the developing nodule. Also, nodules elicited by Rm 1021-derived exo mutants were more likely to develop on secondary roots than on the primary root. In contrast with wild-type R. meliloti-induced nodules, the exo mutant-induced nodules lacked a well defined apical meristem, presumably due to the abortion of the infection threads. The relationship of these findings to the physiology of nodule development is discussed.  相似文献   

2.
The aim of this work is to study the genetic diversity and the symbiotic effectiveness of the natural populations of rhizobia nodulating chickpea (Cicer arietinum L.) in six locations of South Tunisia, where chickpea had never been cultivated. Nodules were observed only in the two soil samples from Gafsa (0.8 nodules per plant) and Tataouine (2 nodules per plant). PCR-RFLP typing of 165 rRNA genes of 42 isolates indicated that all analysed strains showed the same ribotype as the reference strainSinorhizobium meliloti RCR2011. These isolates induced ineffective nodules on chickpea andMedicago sativa; however nodules onMedicago laciniata were effective. Analysis of the symbiotic diversity by PCR-RFLP, of thenifDK spacer suggested that all chickpea isolates from the South belong to the biovarmedicaginis ofS. meliloti. The present paper is, to our knowledge, the first report showing that chickpea is selectively nodulated under soil conditions by a specific biovar ofS. meliloti showing specificity toM. laciniata. The specificity of this interaction as well the impact of this inefficient nodulation on chickpea cultivation needs to be investigated further.  相似文献   

3.
Sinorhizobium fredii strain USDA208 is a nitrogen-fixing bacterium that forms nodules on roots of soybean and other legume plants. We previously found that the Tn5-containing mutant 208T3, which was derived from strain USDA208, is both deficient in production of exopolysaccharides and more competitive than the wild-type strain in competing against other rhizobia for nodulation of soybean. We now demonstrate that the transposon insertion of the mutant lies in a locus that is highly homologous to a portion of the exo region, which functions in exopolysaccharide biosynthesis by Sinorhizobium meliloti. We sequenced 2906 bp surrounding the insertion site and identified three genes: exoA, exoM, and exoO. The transposon lies within exoM, a glucosyl transferase. A cosmid containing exoHKLAMONP of S. meliloti restores exopolysaccharide production by mutant 208T3 to wild-type levels. Although exo mutants of S. meliloti are defective in their abilities to form indeterminate nodules, the capacities of mutant 208T3 and its wild-type parent to form such nodules on five legume species are indistinguishable. Thus the symbiotic function of exopolysaccharide in S. fredii appears to differ fundamentally from that in S. meliloti.  相似文献   

4.
K. Niehaus  D. Kapp  A. Pühler 《Planta》1993,190(3):415-425
Mutants of the symbiotic soil bacterium Rhizobium meliloti that fail to synthesize the acidic exopolysaccharide EPS I were unable to induce infected root nodules on Medicago sativa L. (alfalfa). These strains, however, elicited pseudonodules that contained no infection threads or bacteroids. The cortical cell walls of the pseudonodules were abnormally thick and incrusted with an autofluorescent material. Parts of these cell walls and wall appositions contained callose. Biochemical analysis of nodules induced by the EPS I-deficient R. meliloti mutant revealed an increase of phenolic compounds bound to the nodule cell walls when compared with the wild-type strain. These microscopic and biochemical data indicated that a general plant defence response against the EPS I-deficient mutant of R. meliloti was induced in alfalfa pseudonodules. Following prolonged incubation with the EPS I-deficient R. meliloti mutant, the defence system of the alfalfa plant could be overcome by the rhizobium mutant. In the case of the delayed infections, the mutants colonized lobes of the pseudonodules, but the infection threads in these nodules had an abnormal morphology. They were greatly enlarged and did not contain the typical gum-like matrix inside. The bacteria were tightly packed. Based on the mechanism of phytopathogenic interactions, we propose that EPS I or a related compound may act as a suppressor of the alfalfa plant defence system, enabling R. meliloti to infect the plant.  相似文献   

5.
Many species of rhizobial bacteria can invade their plant hosts and induce development of symbiotic nitrogen-fixing nodules only if they are able to produce an acidic exopolysaccharide (EPS) with certain structural and molecular weight characteristics.13 Sinorhizobium meliloti that produces the functional form of the exopolysaccharide succinoglycan induces formation of invasion structures called infection threads in the root hair cells of its plant hosts alfalfa and Medicago truncatula. However, S. meliloti mutants that cannot produce succinoglycan are not able to induce infection thread formation, resulting in an early arrest of nodule development and in nitrogen starvation of the plant. Mounting evidence has suggested that succinoglycan acts as a signal to these host plants to permit the entry of S. meliloti. Now, our microarray screen and functional category analysis of differentially-expressed genes show that M. truncatula plants inoculated with wild type S. meliloti receive a signal to increase their translation capacity, alter their metabolic activity and prepare for invasion, while those inoculated with a succinoglycan-deficient mutant do not receive this signal, and also more strongly express plant defense genes.Key words: nitrogen fixation, nodule, succinoglycan, microarray, legume, rhizobial bacteria, Sinorhizobium meliloti, Medicago truncatula, infection thread, root hair  相似文献   

6.
The expression of the pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) of Rhizobium tropici CIAT899 and Sinorhizobium meliloti RCR2011 was investigated under different nutrient-limiting conditions in continuous cultures, under different conditions of phosphate availability, and in S. meliloti bacteroids. The presence of free PQQ in alfalfa root exudates has also been assayed. It was shown that apo-GDH or holoenzyme was actively synthesized by these rhizobia, with the concomitant production of gluconate from glucose, under certain environmental conditions. GDH activity was also detected in bacteroids from alfalfa root nodules inoculated with either S. meliloti RCR2011 or 102F34. It was also shown that free PQQ was present in root exudates of alfalfa, but its production is ascribed to the activity of Erwinia sp., a normal contaminant of these seeds. Received: 28 August 2000 / Accepted: 2 October 2000  相似文献   

7.
Several purine auxotrophs were isolated inRhizobium meliloti and characterized for their nutritional requirements. They were found to produce small, irregular nodules lacking any detectable nitrogenase activity onMedicago sativa. The symbiotic aberration manifests itself only in the late developmental stage, for, (i) these purine auxotrophs infect theMedicago sativa root hairs by forming normal infection threads, and (ii) the mutants are recovered from the root nodules induced by them. External supplementation of the plant growth substrate with purines or their biosynthetic intermediates fails to restore symbiosis. This, and the failure of complementation of these auxotrophs with the known symbiotic genes, demonstrates that these mutants perhaps define a new set of genes influencing the symbiotic process inRhizobium meliloti.  相似文献   

8.
An investigation was made of the survival of six strains of Rhizobium meliloti filtered on membrane filters and held in atmospheres of controlled relative humidities (RH) of from 0 to 100% at 30°C in the presence of air. The rate of water loss in the desiccator was determined by the humidity-controlling solution used. Drying was accelerated by a mild evacuation of the desiccator during the drying step. Survival rates of R. meliloti strains were much higher after slow drying to 0% RH than immediately after rapid drying. Fast drying (drying period less than 3.4 h) was shown to adversely affect the tolerance to storage at all RH values tested (no survival after 2 to 5 days of storage). When survival during storage was measurable (after slow drying), the optimum RH values for storage were 43% for strains A145 and Wu498, 22 to 43% for strains RCR2011, Wu499, and Ar16, and 83% for strain RCR2004. The most favorable drying periods were 8, 9.2, 14.2, and 50.1 h for the subsequent storage of strain RCR2011 at RH values of 0, 22, 43, and 83%, respectively. The damaging effects of rapid drying on the tolerance of strain RCR2011 to storage at different RH values could be prevented either by rehydration and subsequent slow redrying or incomplete rapid drying followed by slow drying. It is suggested that R. meliloti strains are susceptible to desiccation stresses. However, the quantitative differences among strains appear to be large enough to permit selection with regard to tolerance to desiccation and storage in dried states.  相似文献   

9.
1-Aminocyclopropane-1-carboxylate (ACC) deaminase has been found in various plant growth-promoting rhizobacteria, including rhizobia. This enzyme degrades ACC, the immediate precursor of ethylene, and thus decreases the biosynthesis of ethylene in higher plants. The ACC deaminase of Rhizobium leguminosarum bv. viciae 128C53K was previously reported to be able to enhance nodulation of peas. The ACC deaminase structural gene (acdS) and its upstream regulatory gene, a leucine-responsive regulatory protein (LRP)-like gene (lrpL), from R. leguminosarum bv. viciae 128C53K were introduced into Sinorhizobium meliloti, which does not produce this enzyme, in two different ways: through a plasmid vector and by in situ transposon replacement. The resulting ACC deaminase-producing S. meliloti strains showed 35 to 40% greater efficiency in nodulating Medicago sativa (alfalfa), likely by reducing ethylene production in the host plants. Furthermore, the ACC deaminase-producing S. meliloti strain was more competitive in nodulation than the wild-type strain. We postulate that the increased competitiveness might be related to utilization of ACC as a nutrient within the infection threads.  相似文献   

10.
To detect the presence of NO, ROS and RNS in nodules of crack entry legumes, we used Arachis hypogaea functional nodule. The response of two cognate partner rhizobia was compared towards NO and GSNO using S. meliloti and Bradyrhizobium sp NC921001. ROS, NO, nitrosothiol and bacteroids were detected by fluorescence microscopy. Redox enzymes and thiol pools were detected biochemically. Nitrosothiols were found to be present but ROS and NO were absent in A. hypogaea nodule. A number of S-nitrosylated proteins were also detected. The total thiol pool and most of the redox enzymes were low in nodule cytosolic extract but these were found to be high in the partner microorganisms indicating partner rhizobia could protect the nodule environment against the nitrosothiols. Both S. meliloti and Bradyrhizobium sp NC921001 were found to contain GSNO reductase. Interestingly, there was a marked difference in growth pattern between S. meliloti and Bradyrhizobium sp in presence of sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO). Bradyrhizobium sp was found to be much more tolerant to NO donor compounds than the S. meliloti. In contrast, S. meliloti showed resistance to GSNO but was sensitive to SNP. Together our data indicate that nodule environment of crack entry legumes is different than the nodules of infection mode entry in terms of NO, ROS and RNS. Based on our biochemical characterization, we propose that exchange of redox molecules and reactive chemical species is possible between the bacteroid and nodule compartment.  相似文献   

11.
Rhizobium meliloti Rm1021 must be able to synthesize succinoglycan in order to invade successfully the nodules which it elicits on alfalfa and to establish an effective nitrogen-fixing symbiosis. Using R. meliloti cells that express green fluorescent protein (GFP), we have examined the nature of the symbiotic deficiency of exo mutants that are defective or altered in succinoglycan production. Our observations indicate that an exoY mutant, which does not produce succinoglycan, is symbiotically defective because it cannot initiate the formation of infection threads. An exoZ mutant, which produces succinoglycan without the acetyl modification, forms nitrogen-fixing nodules on plants, but it exhibits a reduced efficiency in the initiation and elongation of infection threads. An exoH mutant, which produces symbiotically nonfunctional high-molecular-weight succinoglycan that lacks the succinyl modification, cannot form extended infection threads. Infection threads initiate at a reduced rate and then abort before they reach the base of the root hairs. Overproduction of succinoglycan by the exoS96::Tn5 mutant does not reduce the efficiency of infection thread initiation and elongation, but it does significantly reduce the ability of this mutant to colonize the curled root hairs, which is the first step of the invasion process. The exoR95::Tn5 mutant, which overproduces succinoglycan to an even greater extent than the exoS96::Tn5 mutant, has completely lost its ability to colonize the curled root hairs. These new observations lead us to propose that succinoglycan is required for both the initiation and elongation of infection threads during nodule invasion and that excess production of succinoglycan interferes with the ability of the rhizobia to colonize curled root hairs.  相似文献   

12.
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule.  相似文献   

13.
Stachydrine, a betaine released by germinating alfalfa seeds, functions as an inducer of nodulation genes, a catabolite, and an osmoprotectant in Sinorhizobium meliloti. Two stachydrine-inducible genes were found in S. meliloti 1021 by mutation with a Tn5-luxAB promoter probe. Both mutant strains (S10 and S11) formed effective alfalfa root nodules, but neither grew on stachydrine as the sole carbon and nitrogen source. When grown in the absence or presence of salt stress, S10 and S11 took up [14C]stachydrine as well as wild-type cells did, but neither used stachydrine effectively as an osmoprotectant. In the absence of salt stress, both S10 and S11 took up less [14C]proline than wild-type cells did. S10 and S11 appeared to colonize alfalfa roots normally in single-strain tests, but when mixed with the wild-type strain, their rhizosphere counts were reduced more than 50% (P ≤ 0.01) relative to the wild type. These results suggest that stachydrine catabolism contributes to root colonization. DNA sequence analysis identified the mutated locus in S11 as putA, and the luxAB fusion in that gene was induced by proline as well as stachydrine. DNA that restored the capacity of mutant S10 to catabolize stachydrine contained a new open reading frame, stcD. All data are consistent with the concept that stcD codes for an enzyme that produces proline by demethylation of N-methylproline, a degradation product of stachydrine.  相似文献   

14.
Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.  相似文献   

15.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

16.
Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4′,7-dihydroxyflavone, 4′,7-Dihydroxyflavanone, and 4,4′-dihydroxy-2-methoxychalcone, the three principal nod gene inducers secreted by alfalfa roots. Chemotactic responses to the root-secreted nod inducers in capillary assays were usually two- to four-fold above background and, for the flavone and flavonone, occurred at concentrations lower than those required for half-maximal induction of the nodABC genes. Complementation experiments indicated that the lack of chemotactic responsiveness to luteolin seen in nodD1 and nodA mutants of R. meliloti was not due to mutations in the nod genes, as previously thought. Thus, while nod gene induction and flavonoid chemotaxis have the same biochemical specificity, these two functions appear to have independent receptors or transduction pathways. The wild-type strain was found to suffer selective, spontaneous loss of chemotaxis towards flavonoids during laboratory subculture.  相似文献   

17.
A mutant (WL3A150) of Rhizobium meliloti 102F51 that elicits an unusually high number of nodules on its host, alfalfa (Medicago sativa), supports the idea that the host may rely on early bacteroid development in the nodule or on metabolites produced in the infection thread as one of the signals to control further nodulation. This mutant was initially isolated because of its Fix phenotype. It consistently formed many more nodules than all the other Fix mutants isolated from strain 102F51 (a total of 11 mutants). Nodules formed by this mutant were small and white and were indistinguishable in appearance from nodules formed by the other Fix mutants. An ultrastructural study of the nodules, however, showed that this mutant, although forming numerous infection threads, failed to develop into bacteroids. The ability of the mutant to form an unusually high number of nodules coulde be suppressed in a time-dependent manner by the presence of the wild type.  相似文献   

18.
A series of Rhizobium meliloti and Rhizobium trifolii strains were used as inocula for alfalfa and clover, respectively, grown under bacteriologically controlled conditions. Replicate samples of nodules formed by each strain were assayed for rates of H2 evolution in air, rates of H2 evolution under Ar and O2, and rates of C2H2 reduction. Nodules formed by all strains of R. meliloti and R. trifolii on their respective hosts lost at least 17% of the electron flow through nitrogenase as evolved H2. The mean loss from alfalfa nodules formed by 19 R. meliloti strains was 25%, and the mean loss from clover nodules formed by seven R. trifolii strains was 35%. R. meliloti and R. trifolii strains also were cultured under conditions that were previously established for derepression of hydrogenase synthesis. Only strains 102F65 and 102F51 of R. meliloti showed measurable activity under free-living conditions. Bacteroids from nodules formed by the two strains showing hydrogenase activity under free-living conditions also oxidized H2 at low rates. The specific activity of hydrogenase in bacteroids formed by either strain 102F65 or strain 102F51 of R. meliloti was less than 0.1% of the specific activity of the hydrogenase system in bacteroids formed by H2 uptake-positive Rhizobium japonicum USDA 110, which has been investigated previously. R. meliloti and R. trifolii strains tested possessed insufficient hydrogenase to recycle a substantial proportion of the H2 evolved from the nitrogenase reaction in nodules of their hosts. Additional research is needed, therefore, to develop strains of R. meliloti and R. trifolii that possess an adequate H2-recycling system.  相似文献   

19.
The aim of this study was to determine the plant growth-promoting potential of the nodule endophytic Pseudomonas brassicacearum strain Zy-2-1 when used as a co-inoculant of Medicago lupulina with Sinorhizobium meliloti under copper (Cu) stress conditions. Strain Zy-2-1 was capable of producing ACC deaminase activity, IAA and siderophores, and was able to grow in the presence of Cu2+ up to 2.0 mmol/L. Co-inoculation of S. meliloti with Zy-2-1 enhanced M. lupulina root fresh weight, total plant dry weight, number of nodules, nodule fresh weight and nitrogen content in the presence of 100 or 300 mg/kg Cu2+. In the presence of 500 mg/kg Cu2+, co-inoculation with S. meliloti and strain Zy-2-1 increased plant height, number of nodules, nodule fresh weight and nitrogen content in comparison to S. meliloti inoculation alone. Furthermore, a higher amount of Cu accumulation in both shoots and roots and a higher level of Cu translocation to shoots were observed in co-inoculated plants. These results demonstrate that co-inoculation of M. lupulina with S. meliloti and P. brassicacearum Zy-2-1 improves plant growth, nitrogen nutrition and metal extraction potential. This can be of practical importance in the remediation of heavy metal-contaminated soils.  相似文献   

20.
The availability of a wide range of independent lines for the annual medic Medicago truncatula led us to search for natural variants in the symbiotic association with Sinorhizobium meliloti. Two homozygous lines, Jemalong 6 and DZA315.16, originating from an Australian cultivar and a natural Algerian population, respectively, were inoculated with two wild-type strains of S. meliloti, RCR2011 and A145. Both plant lines formed nitrogen-fixing (effective) nodules with the RCR2011 strain. However, the A145 strain revealed a nitrogen fixation polymorphism, establishing an effective symbiosis (Nod(+)Fix(+)) with DZA315.16, whereas only small, white, non-nitrogen fixing nodules (Nod(+)Fix(-)) were elicited on Jemalong 6. Cytological studies demonstrated that these non-fixing nodules are encircled by an endodermis at late stages of development, with no visible meristem, and contain hypertrophied and autofluorescent infection threads, suggesting the induction of plant defense reactions. The non-fixing phenotype is independent of growth conditions and determined by a single recessive allele (Mtsym6), which is located on linkage group 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号