首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
KRAAK  H. L.; VOS  J. 《Annals of botany》1987,59(3):343-349
Seeds of two lettuce cultivars (Lactuca sativa L., cv. Meikoninginand cv. Grand Rapids) were hermetically stored with constantmoisture contents ranging between 3.6 and 17.9 per cent (freshweight basis) at constant temperatures ranging between 5 and75 °C. The decline with time in percentage germination andpercentage normal seedlings was determined for each storagetreatment. The data were fitted to an equation which containsthe constants: K1, the probit of the initial percentage germinationor normal seedlings; KE, a species constant; CW, the constantof a logarithmic moisture term; CH, the constant of a lineartemperature term and CQ, the constant of a quadratic temperatureterm. Regression analysis of data from storage periods up to5.5 years at temperatures of 5–75 °C and seed moisturecontents of 3.6–13.6 per cent yielded the following values:KE= 8.218, CW=4.797±0.163, CH=0.0489±0.0050 andCQ=0.000365±0.000056. Although this equation consistentlyprovided a better fit, simplified equations, assuming eithera log-linear relationship between seed longevity and temperature,or a log-linear relationship between seed longevity and bothmoisture content and temperature, accounted for more than 94per cent of the variation at the restricted temperature rangeof 5–40 °C. Longevity of the same seed lots at sub-zero temperatures (–5,–10 and –20 °C) was studied in separate tests.Freezing damage, resulting in abnormal seedlings in the germinationtest, occurred at –20 °C when the moisture contentof the seeds exceeded 12 per cent. No decline in percentagenormal seedlings was observed after a storage period of 18 monthsor longer at –20 °C, provided the seed moisture contentdid not exceed 9.5 per cent. For seeds stored at –5 and–10 °C with 9.6–12.5 per cent moisture content,the observed rate of decline of percentage normal seedlingswas adequately predicted by the viability equation, using theabove values for the constants. This suggests that for low moisturecontents the viability equation can be applied to estimate longevityat sub-zero temperatures. Lettuce, Lactuca sativa (L.), seed longevity, seed storage, viability constants, storage conditions  相似文献   

2.
ROBSON  M. J. 《Annals of botany》1981,48(3):269-273
Fully light-intercepting simulated swards of S24 perennial ryegrasswere exposed to contrasting environmental conditions in a growthroom for 4 days. Half experienced 20 h days of 120 Wm–2(400–700. nm) and 5 °C, and came to have a WSC (watersoluble carbohydrate) content of 235 mg g–1 and half 4h days of 20 Wm–2 and 25 °C leading to a WSC of 25mg g–1. Their rates of CO2 efflux were monitored at anumber of temperatures during an 8 h dark period; half experiencedincreasing (5–30 °C) and half decreasing (30–5°C) temperatures. The ‘high’ WSC swards hadrespiration rates of 3.7 mg CO2 g–1 (d. wt) h–1at 15 °C, and the ‘low’ swards 0.8 mg CO2 g–1h–1. The order in which the temperatures were experiencedwas immaterial. Even the ‘low’ WSC swards showedno evidence of a respiratory decline during the dark periodthat could be attributed to substrate shortage. The relationshipbetween temperature and CO2 efflux was best represented by logisticcurves. Even so, a Q10 of 2 fitted the data reasonably well,at least up to 20 °C, and has practical advantages wheninterpolating estimated between measured values of respirationin the construction of a carbon balance sheet. Lohum perenne L., ryegrass, respiration, temperature, Q10, soluble carbohydrate content, simulated sward  相似文献   

3.
The vapour pressures of aqueous solutions of polyethylene glycol6000 have been measured (by equilibration with sucrose solutions)up to the saturation point at 25 °C (1.45 g g–1 water).The reduced-osmotic-pressure (/c), when plotted versus concentration(c), rapidly and linearly increased up to a concentration ofabout 0.8 g g–1 (crossing the similar plot for sucrose).Above this concentration, the reduced-osmotic-pressure rosemore slowly, but still more rapidly than sucrose. The maximumosmotic pressure achieved at saturation was nearly 18 MPa. Usingthe virial equation: /c= RT/M + RTA2c, the calculated secondvirial coefficient (A2) for the linear part is 4.5 x 10–3mol g–1, a value slightly greater than most literaturevalues at 25 °C. Data are cited showing that A2 varies linearlyfrom 5–6 x 10x3 at 0 °C, to zero at 80–90 °C  相似文献   

4.
Lolium temulentum plants were grown at 20 °C, under an 8-hdaylength, in a controlled-environment chamber, and the kineticsof leaf expansion were observed by measuring the movement ofan optical grid attached to the fourth leaf. The leaf emerged23–24 d after sowing and was fully expanded 9–10d later. Extension rate was maximal between the second and fifthdays after emergence and declined markedly thereafter. Duringthe rapid growth phase the rate of elongation exhibited a distinctdiurnal rhythm, fluctuating between 1.9 to 2.3 mm h–1in the light period, and 1.3 to 1.7 mm h–1 in the dark.A circadian oscillation with a period of about 27 h was observedin leaves elongating in continuous darkness. When plants weretransferred to 5 °C soon after emergence of the fourth leafthere was an immediate reduction in rate of growth to about22 per cent of the rate at 20 °C: the Q10 for the mean elongationrate in the range 20–5 °C was 3.7. When plants weretransferred from 20 to 2 °C at fourth leaf emergence, meanextension rate declined to less than 5 per cent, correspondingto a Q10 in the range 5–2 °C of more than 300. Furthermore,growth at 2 °C was confined almost entirely to the darkphase of the photoperiod cycle. The responsive tissue was shownto be a small area of expanding leafless than 1.5 cm above theshoot apex and the possible mechanisms underlying low temperatureeffects in this region are discussed. Lolium temulentum L., leaf growth, auxanometer, low temperature, diurnal rhythm  相似文献   

5.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

6.
Ingestion, respiration, and molting loss rates were measuredover the 3 – 29°C range in Neomysis intermedia. Weightspecific rates of these physiological processes ranged from2 to 140% body C day–1 for ingestion, from 2 to 15% bodyC day–1 for respiration, and from 0.1 to 5% body C day–1for molting loss. All weight-specific rates showed a logarithmicdecrease with a logarithmic increase in body weight, and a logarithmicincrease with a linear increase in temperature below 20 or 25°C.The effect of temperature, however, was different between thephysiological rates, with a large temperature dependency foringestion (Q10 = 2.6 –3.9) and molting loss (Q10 = 2.9– 3.6) and a moderate temperature dependency for respiration(Q10 = 1.9 – 2.1). Calculated assimilation efficiencychanged with body size, but was constant over the temperaturerange examined. Allocation of assimilated materials varied witha change in temperature, reflecting the different temperaturedependence between physiological processes. It was deduced thatthe strong temperature dependency of the growth rate in N. intermediaobserved in the previous studies resulted from the large temperatureeffect on ingestion and assimilation rates, superimposed bythe different allocation of assimilated materials. 1Present address: Department of Botany, University of Tokyo,Hongo, Tokyo 113, Japan  相似文献   

7.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

8.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

9.
Controlled environment experiments were performed to determinethe effects of temperature and water potential on germination,radicle elongation and emergence of mungbean (Vigna radiata(L.) Wilczek cv. IPB-M79-17-79). The effects of a range of constant temperatures (15–45°C) and water potentials (0 to –2.2 MPa) on germinationand radicle elongation rates were studied using an osmoticumtechnique, in which seeds were held against a semi-permeablemembrane sac containing a polyethylene glycol solution. Linearrelationships were established between median germination time(Gt50) and water potential at different temperatures, and betweenreciprocal Gt50 (germination rate) and temperature at differentwater potentials. Germination occurred at potentials as lowas –2.2 MPa at favourable temperatures (30–40 °C),but was fastest at 40 °C when water was not limiting, withan estimated base temperature (Tb) of about 10 °C. Subsequentradicle elongation, however, was restricted to a slightly narrowertemperature range and was fastest at 35 °C. The conceptof thermal time was used to develop an equation to model thecombined effects of water potential and temperature on germination.Predictions made using this model were compared with the actualgermination obtained in a related series of experiments in columnsof soil. Some differences observed suggested the additionalimportance of the seed/soil/water contact zone in influencingseed germination in soil. Seedling emergence appeared to reflectfurther the radicle elongation results by occurring within anarrower range of temperatures and water potentials than germination.Emergence had an estimated Tb of 12.6 °C and was fastestat 35 °C. A soil matric potential of not less than about–0.5 MPa at sowing was required to obtain 50% or moreseedling emergence. Key words: Germination, temperature, water potential  相似文献   

10.
Maximum daily consumption was estimated for Mysis relicta fedad libitum rations of Daphnia pulex at 4,10,15 and 18°C.Gut-residence time was also evaluated for M.relicta fed clado-ceranprey at 4, 10 and 157deg;C. Mean daily consumption (g dry weightof Daphnia g–1 dry weight of Mysis day–1) rangedfrom 6% at 4%C to 12% at 10°. At 18°C, Mysis feedingrate declined to 9% day1. Mean, weight-adjusted consumptionrates exhibited a ‘dome-shaped’ response in relationto water temperature. Consumption rate was highest at 10°Cand lowest at 4°C. Estimated Q10 was more sensitive from4 to 10°C (Q10= 3) than from 10 to 15°C (Q10=1.2). Gut-residencetime for Mysis was inversely related to water temperature, implyingthat evacuation rate increases linearly with water temperature.Feeding and gut-evacuation rates become disassociated at watertemperatures >10°C. As water temperature increased above1°C, relative evacuation rate increased, whereas feedingrate declined. It is postulated that at higher water temperatures,disassociated feeding and gut-evacuation rates reduce the scopefor growth of vertically migrating Mysis and impose a physiologicalconstraint that isolates Mysis from warm, epilimnetic waterduring thermal stratification. 1Present address: Center for Aquatic Ecology, Illinois NaturalHistory Survey, Sam Parr Biological Station, 6401 Meacham Road,Kinmundy, IL 62854, USA  相似文献   

11.
Plants of the C4 sedge Cyperus longus L. were grown at 10, 20and 30 °C. An asymptotic growth curve, the Richards function,was fitted to growth data for successive leaves. The mean rateof leaf appearance was a linear function of temperature with0.014 leaves appearing per day for every 1 °C increase intemperature. The instantaneous relative rate of leaf extensionshowed a marked ontogenetic drift which was most rapid at 30°C and slowest at 10 °C. The mean absolute extensionrate for foliage had a temperature coefficient of 0.16 cm d–1° C–1 in the range from 10 to 30 °C. The durationof leaf growth was independent of leaf number at 10 and 20 °Cbut increased linearly with leaf number at 30 °C. The smalldifferences in relative growth rate at the three temperaturesresulted in large differences in foliage area produced at theend of a 30 d growth period. The final foliage areas at 20 and10 °C were 51 and 9% respectively of that at 30 °C. Cyperus longus, temperature, leaf growth, Richards function, growth analysis  相似文献   

12.
Seasonal changes in the photosynthesis and primary productionof Microcystis aeruginosa Kütz. were investigated in LakeKasumigaura during 1981–1982. Microcystis always showeda light-saturated photosynthesis-light curve. Both Pmax andthe initial slope of the photosynthesis-light curve of Microcystisin early summer were very high, so it was concluded that Microcystisutilized both low and high light intensities efficiently. ThePmax of Microcystis was found to be a function of the watertemperature except in August and September. The linear regressionon the temperature-Pmax relationship discontinued at 11°C,where the Pmax value dropped; Microcystis did not photosynthesizebelow 4°C. The initial slope of the curve was also descendingbelow 11°C. It is suggested that Microcystis changes itsphysiological properties below 11°C. The highest value ofgross production calculated for M. aeruginosa was 5.4 gC m–2d–1 in July; the annual gross production was estimatedto be 300 gC m–2year–1 (i.e., 40% of the total primaryproduction in this lake).  相似文献   

13.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

14.
Several models have been proposed to describe germination rates,but most are limited in statistical analysis and biologicalmeaning of indices. Therefore, a mathematical model is proposedto utilize the logistic function. The function was defined asan overall response including time, temperature, and the interactionbetween time and temperature. Cumulative germination percentagesover time were used to develop the model. Germination tests were conducted on indiangrass (Sorghastrumnutans (L.) Nash) strain ‘IG-2C-F1’, at constanttemperatures of 9, 12, 15, 20, 25, and 30 °C. The functionfitted the observed data over six temperatures at r2 = 0.99.Time to reach 10% of final germination (Gt10) increased from2.5 d at 30 °C to 44.0 d at 9 °C, and Gt50 (time toreach 50% of final germination) increased from 3.6 d at 30 °Cto 53.8 d at 9 °C. True germination rate (% d–1) foreach temperature was maximum at Gt50. A linear model of 1/Gt50versus temperature was used to estimate the base temperatureof 8.3 °C for germination. An Arrhenius plot indicated achange occurred between 20 °C and 25 °C for temperatureresponse of germination. Published data on hypocotyl growthof Cucumis melo L. were recalculated using the model. Absolutegrowth rates showed a temperature response similar to the publishedweighted-mean elongation rates. Base temperature for hypocotylgrowth of C. melo was estimated as 8.8 °C. The proposedmodel proved to be useful in calculating and interpreting germinationand growth kinetics. Key words: Indiangrass, Sorghastrum nutans (L.) Nash, Germination rate, Threshold temperature, Arrhenius plot, Growth rate, Cucumis melo L  相似文献   

15.
A strain of the marine rotifer Synchaeta cecilia valentina,n. subsp., isolated from the Hondo of Elche Spanish Mediterraneancoastal lagoon at 22 salinity, was cultured in the laboratoryin 20 ml test tubes and fed with the alga Tetrasemis suecica.The effect of two temperatures (20 and 24°C), four salinities(20,25,30 and 37) and two food levels (15 000 and 25000 cellsml–1) on the life history traits of this rotifer werestudied in life tables performed with replicated individualcultures. Temperature and salinity had a significant negativeeffect (P < 0.001) on the average lifespan (LS) and on thenumber of offspring per female (R0) The effect of food levelon LS is unclear, whereas R0 is greater at 20°C with thelower concentration of algae and at 24°C with the higheralgal concentration. The maximum values of LS and R0, 5.6 daysand 9.2 offspring per female, respectively, were recorded at20°C, 25o salinity and low food concentration. There isalso a clear negative effect on the intrinsic growth rate (r)due to salinity. The effect of temperature depends on the foodlevel and, as occurs with R0 the maximum values of r occur withthe lower algal concentration at 20°C, whereas at 24°Cthey are obtained with the higher algal concentration. Theser values, from 1.04 to 1.10 day–1, were reached at 24°C,salinities of 20–25 and with high food concentration.  相似文献   

16.
The emergence of celery (Apium graveolens L. cv. Utah 52–70)seeds was promoted by growth regulators when exposed to hightemperatures during the germination period. The growth regulatorswere applied to dry seeds prior to sowing, by means of the organicsolvent dichloromethane (DCM). A mixture of gibberellins A4and A7 (GA4/7) strongly enhanced emergence at a high day-timetemperature of 35°C alternating with night temperaturesof 20°C and 25°C; however, emergence was very poor whenthe night temperature was raised to 30°C. Under the latterregime, only mixtures of GA4/7 with 6-benzylaminopurine (BA)or with 2-chlorophosphonic acid (ethephon) promoted seed emergence.However, BA and ethephon applied separately or in combinationwere much less effective in enhancing seed emergence withoutthe addition of GA4/7, under all the temperature regimes.  相似文献   

17.
Plants of six contrasting genotypes of barley were raised fromvernalized (imbibed at 1 °C for 30 d) or non-vernalizedseeds and grown in 12 different controlled environments comprisingfactorial combinations of three photoperiods (10, 13 and 16h d–1), two day temperatures (18 and 28 °C) and twonight temperatures (5 and 13 °C). Except at longer daysfor Athenais or Arabi Abiad, the 28 °C day temperature wasgenerally supra-optimal and delayed awn emergence. At lowertemperatures and in photoperiods shorter than the critical value,PC, which delay awn emergence, the time from sowing to awn emergencefor five of the genotypes conformed to the equation 1/f=a +bT{macron}+cPwhere f is the time to awn emergence (d), T{macron} is meandiurnal temperature (°C), P is photoperiod (h d–1)and a, b and c are genotype-specific constants. In Arabi Abiad,however, significant responses to temperature were not detected.The low temperature pre-treatment of the seeds reduced the subsequenttime to awn emergence in Athenais and the autumn-sown genotypesAger, Arabi Abiad and Gerbel B, especially in longer days, buteither had no effect or tended to delay awn emergence in thespring-sown types Emir and Mona. In the spring-sown types PCwas outside the range investigated (i.e. > 16 h d–1),but in Ager it was approx. 13 h d–1 and in Gerbel B justover 13 h d–1. For plants of Arabi Abiad grown from vernalizedseeds Pc was almost 15 h, but  相似文献   

18.
The oxygen consumption of the protobranch bivalve Nucula turgidawas measured in relation to size and to variation in temperatureand ambient oxygen tension. The slope of the line relating logsize and log oxygen uptake varied from 0.539 to 0.884 over therange 5°C to 40°C in summer – conditioned (S)animals but for winter – conditioned (W) animals the slopevaried from 0.561 to 0.762 over the range 5°C to 15°Conly; from 20°C to 35°C the values for the slope fellfrom 0.298 to 0.092. There was evidence of reverse acclimation,since the absolute rate of oxygen consumption was greater inS animals than in W over the temperature range studied. Thelethal limit for both groups appeared to be between 30°Cand 35°C. At all temperatures (5°C–25°C) N. turgida wasfound to be a near complete oxyconformer with b2 x 103 valuesranging from +0.0754 to –0.0234. The responses to temperature differ little from those of eulamellibranchbivalves, but the lack of ability to oxyregulate does demonstratea difference which may be linked to the different gill structure. (Received 13 January 1983;  相似文献   

19.
Effects of temperature (15°, 20° and 25°C), O2 partialpressure (PO2=0, 1, 2, 4, and 6 kPa), and individual size(12–79 mm shell length; SL) on survivorship of specimensof the non-indigenous, marine, brown mussel, Perna perna, fromTexas were investigated to assess its potential distributionin North America. Its hypoxia tolerance was temperature-dependent,survivorship being significantly extended at lower temperaturesunder all tested lethal PO2. Incipient tolerated PO2 was 4 and6 kPa at 15 and 20°C, respectively, with >50% mortalityoccurring at 25°C at all tested levels of hypoxia. PO2 hadless of an effect on survival of hypoxia than temperature. At25°C, survivorship was not different over a PO2 range of0–2 kPa and increased only at 4 and 6 kPa. Survivorshipwas size-dependent. Median survival times increased with increasingSL in anoxia and PO2=1 kPa, but at 2, 4 and 6 kPa,smaller individuals survived longer than larger individuals.With tolerance levels similar to other estuarine bivalve species,P. perna should withstand hypoxia encountered in estuarine environments.Thus, its restriction to intertidal rocky shores may be dueto other parameters, particularly its relatively low temperaturetolerance. (Received 26 January 2004; accepted 31 March 2005)  相似文献   

20.
The thermal dependence of enzyme kinetic parameters has beenpresented as an indicator of species’ thermal optima andtolerance limits. Previous studies suggest the relationshipbetween temperature and the apparent Michaelis–Mentenconstant (Km) of an enzyme system can be used to predict wholeplant success at specific temperatures. The apparent Kmfor glutathionereductase (EC 1.6.4.2; GR) (oxidized glutathione as substrate)extracted from leaves of American sloughgrass (Beckmannia syzigachneSteud.), tufted hairgrass (Deschampsia caespitosa L.), tallfescue (Festuca arundinaceae Schreb. ‘Titan’), andmaize (Zea mays L.), was determined over a range of temperatures(1–40 °C). For all species, minimum apparent KmforGR was observed at 1 °C, and Kmvalues increased as temperatureincreased. The apparent Kmvalues differed among all speciesat the lower temperatures (1–15 °C), but were similarat higher temperatures. The enzyme from tufted hairgrass hadthe lowest apparent Kmat low temperatures (<15 °C), followedin increasing order by American sloughgrass, tall fescue andmaize. Our experimental system failed to reproduce thermal kineticwindow profiles similar to those reported elsewhere. With respectto the enzyme systems reported here, results suggest that thesecool-season grasses can be ranked as more to less eurythermicwithin the temperature range from 1 to 15 °C. Copyright0000 American sloughgrass, Beckmannia syzigachne Steud., tufted hairgrass, Deschampsia caespitosa L., tall fescue, Festuca arundinaceae Schreb. ‘Titan’, Zea mays L., plant competition, temperature stress, kinetics, Michaelis–Menten constant (Km), glutathione reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号