首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

2.
Human lymphocytes were treated with combined UVC radiation and X-rays or they were X-irradiated and incubated for 60–90 min in the presence of DNA-repair inhibitor ara-C. The X-ray induced chromosome exchange aberration yield was enhanced both by UVC and ara-C by approximately a factor of two in the linear (low dose) portion of the dose-response curve. The enhancement was small in the dose squared (high dose) portion where previous dose-fractionation experiments have shown that X-ray-induced lesions leading to aberrations exist for several hours. The yield of aberrations in lymphocytes incubated after irradiation in the presence of ara-C reaches a saturation level almost immediately after irradiation (5–15 min). These cytogenetic observations together with a previous finding (Holmberg and Strausmanis, 1983) give direct and indirect evidence that the enhanced aberration yield is due to short-lived DNA breaks formed immediately after X-irradiation.

Measurements on the repair kinetics of the DNA breaks induced by X-irradiation show that ara-C strongly impairs the repair of short-lived X-ray-induced DNA breaks. It was also observed that the DNA breaks generated after UVC irradiation occur almost immediately after irradiation and the level of these transient DNA breaks reaches saturation even for short incubation times. Thus, the repair of these breaks can compete with the repair of short-lived X-ray-induced DNA-breaks in combined irradiation with UVC and X-rays.

The experimental results can be explained on the assumption that X-ray-induced aberrations originate from exchange complexes formed in interactions between both short-lived DNA breaks. The short-lived DNA breaks give rise to exchange complexes mainly within single ionization tracks where the DNA breaks are close together. The time between irradiation and exchange complex formation is of the order of 5–15 min within such a track, and short-lived breaks might be repaired before complexes have been formed. If the DNA repair of these breaks is delayed by UVC or ara-C treatment this results in a higher probability of exchange-complex formation. In contrast, interactions between breaks in different tracks originate from long-lived DNA breaks and the probability for complex formation from these breaks is not markedly affected by UVC or ara-C.  相似文献   


3.
The formation and disappearance of DNA single-strand breaks (SSB) produced by 4-demethoxydaunorubicin (4-dmDR) in P388 murine leukemia cells and in a resistant subline were examined by alkaline elution methods in relation to cellular pharmacokinetics. DNA strand breaks produced by this intercalating agent were essentially DNA lesions mediated by topoisomerase II, even at very high drug concentrations, since they were detected as protein-associated breaks by filter elution. Similarly, the appearance of delayed DNA breaks in cells exposed to high concentrations, following drug removal, showed predominance of protein-associated breaks, thus supporting a similar mechanism of breakage induction. This finding indirectly suggests that, in this experimental model, free radical production makes little (if any) contribution to DNA damage, and also that DNA effects are not the consequence of early cell death. In contrast to a rapid disappearance of protein-associated strand breaks produced by intercalating agents and topoisomerase II inhibitors of different classes, DNA breaks induced by low concentrations of the anthracycline derivative are only partially reversible following drug removal, but they persisted and even increased with high concentrations. Thus, not only the extent of DNA breaks but also their persistence may contribute to the cytotoxic potency of anthracyclines. The importance of DNA lesions to cytotoxic action of the anthracycline is also emphasized by drug effect on the resistant line. A negligible effect on DNA of resistant cells was detected at drug concentrations lethal to sensitive cells. However, exposure to equitoxic drug concentrations resulted in a comparable amount of DNA breaks in sensitive and resistant cells. Although faster DNA rejoining in resistant cells may be in part attributable to increased efflux of drug, no correlation exists between cell drug accumulation and extent of DNA lesions. With equitoxic drug concentrations cellular drug content was higher in resistant cells, suggesting an intrinsic insensitivity of this variant to DNA cleavage effects of the anthracycline.  相似文献   

4.
The repair of X-ray-induced DNA single-strand breaks was studied after the completion of growth-medium-independent repair in Escherichia coli K-12. A comparison of the sedimentation of DNA from bacteriophages T2 and T7 was used to test the accuracy of our alkaline and neutral sucrose gradient procedures for determining the molecular weight of bacterial DNA. The repair of DNA single-strand breaks by cells incubated in buffer occurred by two processes. About 85% of the repairable breaks were resealed rapidly (t1/2 = less than 6 min), while the remainder were resealed slowly (t1/2 = approximately 20 min). After the completion of the repair of DNA single-strand breaks in buffer, about 80% of the single-strand breaks that remained were found to be associated with DNA double-strand breaks. The subsequent resuspension of cells in growth medium allowed the repair of both DNA single- and double-strand breaks in wild-type but not in recA cells. Thus the recA-dependent, growth-medium-dependent repair of DNA single-strand breaks is essentially the repair of DNA double-strand breaks.  相似文献   

5.
C W Moore 《Biochemistry》1990,29(5):1342-1347
The contribution of DNA repair to the net number of DNA breaks produced during chemical degradation of DNA was determined by using temperature-sensitive mutant cells deficient in ATP-dependent DNA ligase [poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase, EC 6.5.1.1]. In a very sensitive assay for determining lesions introduced into Saccharomyces cerevisiae DNAs, 2-14C- and 6-3H-prelabeled DNAs from ligase-proficient and ligase-deficient cells were sedimented together through precalibrated, isokinetic alkaline sucrose gradients. DNA ligation was slower after chemical degradation of DNA by bleomycin than after gamma irradiation. DNA breaks increased approximately linearly with drug concentrations, and were approximately equivalent for ligase-proficient and ligase-deficient cells. These results were unexpected because ligase-deficient, but not ligase-proficient, cells lacked the capacity to eliminate DNA breaks produced by bleomycin. The results indicated that DNA repair did not occur during the chemical degradation of DNA under the experimental conditions. Bleomycin B2 produced considerably more DNA breaks than bleomycin A2 over a range of concentrations in ligase-proficient cells, which tolerated higher numbers of DNA breaks in general than ligase-deficient cells. The chemical analogues are structurally identical except for their cationic C-terminal amine. The actual number of DNA breaks produced by bleomycin A2 or bleomycin B2, and not the concentration of bleomycin A2 or bleomycin B2 per se, determined the amount of cell killing. DNA repair is critical in quantitating DNA breaks produced by chemicals, but was ruled out as a factor in the higher DNA breakage by bleomycin B2 than bleomycin A2.  相似文献   

6.
A method is described for measuring the average number of nuclease-induced single- and double-strand breaks per DNA molecule. The procedure involves measuring the weight-average molecular weight of DNase I-digested DNA under neutral and alkaline conditions. A statistical equation is used to calculate the number of breaks per single- or double-stranded DNA molecule from the respective weight-average molecular weights. Enzymatic incorporation of32P into the 5′-OH ends of DNase I-induced breaks gave an independent measurement of the number of breaks per DNA molecule. Results obtained by the two different methods were in good agreement. In agreement with earlier reports we find that magnesium-activated DNase catalyzes a high frequency of single-strand breaks in DNA. The frequency of double-strand breaks is low, but significantly higher than can be explained by random accumulation of single-strand breaks. Our data suggest that the frequency of double-strand scission is affected by DNase-metal ion interactions.  相似文献   

7.
The mechanism of cytotoxic action of 5-fluorodeoxyuridine (FdUrd) in mouse FM3A cells was investigated. We observed the FdUrd-induced imbalance of intracellular deoxyribonucleoside triphosphate (dNTP) pools and subsequent double strand breaks in mature DNA, accompanied by cell death. The imbalance of dNTP pools was maximal at 8 h after 1 microM FdUrd treatment; a depletion of dTTP and dGTP pools and an increase in the dATP pool were observed. The addition of FdUrd in culture medium induced strand breaks in DNA, giving rise to a 90 S peak by alkaline sucrose gradient sedimentation. The loss of cell viability and colony-forming ability occurred at about 10 h. DNA double strand breaks as measured by the neutral elution method were also observed in FdUrd-treated cells about 10 h after the addition. These results lead us to propose that DNA double strand breaks play an important role in the mechanism of FdUrd-mediated cell death. A comparison of the ratio of single and double strand breaks induced by FdUrd to that observed following radiation suggested that FdUrd produced double strand breaks exclusively. Cycloheximide inhibited both the production of DNA double strand breaks and the FdUrd-induced cell death. An activity that can induce DNA double strand breaks was detected in the lysate of FdUrd-treated FM3A cells but not in the untreated cells. This suggests that FdUrd induces the cellular DNA double strand breaking activity. The FdUrd-induced DNA strand breaks and cell death appear to occur in the S phase. Our results indicate that imbalance of the dNTP pools is a trigger for double strand DNA break and cell death.  相似文献   

8.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

9.
This work presents a neutral filter elution method for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay will detect the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increases with X-ray dose. Certain conditions for deproteinization, pH, and filter type are shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induce apparent DNA double strand breaks, although the ratios of double to single strand breaks vary from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters results in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA bands with a double stranded DNA marker in cesium chloride. This evidence suggests that the assay detects DNA double strand breaks. L1210 cells are shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes.  相似文献   

10.
Radiation induced damage, i.e., the induction of DNA strand breaks, was studied on the level of single, unlabeled cells. DNA strand breaks were determined by direct partial alkaline unwinding in intact cell nuclei followed by staining with acridine orange, a development of a proposal first described by B. Rydberg (Int J Radiat Biol 46:521-527, 1984). The ratio of green fluorescence (double-stranded DNA) to red fluorescence (single-stranded DNA) in single cells was taken as a measure of DNA strand breaks. CHO-K1 and M3-1 cells irradiated with X-rays show a dose dependent induction of DNA strand breaks. Incubation at 37 degrees C after irradiation leads to repair of breaks. A repair halflife of about 10-11 min can be determined. Cell cycle specific differences in the induction of DNA strand breaks or repair behavior are not detectable at the resolution achieved so far. This new method offers two major advantages: the resolution of DNA damage and repair on the level of single cells and no need for labeling, thereby allowing for DNA damage and repair to be assessed in biopsy material from tumor patients.  相似文献   

11.
Single-strand breaks are a major form of DNA damage caused by ionizing radiation, and measurement of strand breaks has long been used as an index of overall cellular DNA damage. Most assays for DNA single-strand breaks in cells rely on measuring fractionated DNA samples following alkali denaturation. Quantification is usually achieved by prelabeling cells with radioactive DNA precursors; however, this is not possible in the situation of nondividing cells or freshly isolated tissue. It has previously been demonstrated that the alkali unwinding assay of DNA strand breaks can be quantified by blotting the recovered DNA on nylon membranes and hybridizing with radiolabeled sequence-specific probes. We report here improvements to the technique, which include hot alkali denaturation of DNA samples prior to blotting and the use of carrier DNA that is non-complementary to the radiolabeled probe. Our method allows both single- and double-stranded DNA to be quantified with the same efficiency, thereby improving the sensitivity and reproducibility of the assay, and allows calibration for determination of absolute levels of DNA strand breaks in cells. We also used this method to assay radiation-induced DNA strand breaks in freshly isolated human leukocytes and found them to have a strand break induction rate of 1815 strand breaks/cell/Gy.  相似文献   

12.
Most theories of the mechanisms of chromosomal aberrations involve the concepts of clastogens directly acting on DNA to produce strand breaks, and subsequently, the survival of these directly caused DNA strand breaks – or misrepairs of them – through to metaphase when they appear as chromosomal ‘breaks’ or translocations. Nevertheless, various observations are inconsistent with these theories such as the fact that many chemical clastogens (e.g. caffeine, acridines) do not covalently react with DNA, while almost all of the chemical clastogens (e.g. alkylating agents) which do react covalently with DNA, do not directly cause DNA strand breaks. This paper reviews the ‘direct-clastogen damage to DNA’ theories, and the phenomenology of chromosomal aberrations which are inconsistent with them. Then the theory is considered that the breaks in chromosomes seen at metaphase and anaphase are not the survivors of DNA breaks directly induced by clastogens, but rather derive from breaks created by the enzymes which repair damaged DNA. After that, newer knowledge is reviewed that (i) strand breaks are created during normal DNA unravelling (by topoisomerases), during DNA synthesis, and during DNA repairs, and these breaks can be single- or double-stranded, (ii) breaks variously associated with unravelling, synthesis and repair can occur ‘anywhere, anytime’ (pre-synthesis, synthesis or post-synthesis) in the cell cycle, and (iii) the enzyme assemblies for DNA unravelling, synthesis and repair which make and religate the breaks must be non-covalently tethered to the ends of the DNA strands while the breaks created by the enzymes are in existence. It is then suggested that all the morphological types and other phenomena of chromosomal aberrations can be explained by aspects, mechanisms and effects of failures of this tethering function. Circumstances involving the basic mechanism (failure of DNA-end-tethering function while enzyme-created breaks are in existence) are described which might result in ‘gaps’, translocations (‘exchanges’), complex lesions such as ‘triradials’, as well as in ‘minutes’, amplifications and inversions. Predictions are made concerning likely results in various suggested studies including those involving sensitive assays for DNA-end-to-enzyme tethering functions in vitro.  相似文献   

13.
Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.  相似文献   

14.
15.
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.  相似文献   

16.
It was shown by blot-hybridization with corresponding DNA probes after electrophoretic separation of control and experimental samples of human genome DNA that accumulation of single-strand breaks in the chains of double-strand fragment of transcribing range of ribosomal gene (TRrDNA) does not result in double-strand breaks. That differs from the other studied DNA sequences (cluster of histon genes, Alu-repetition, telomeric repetition and satellite III). Single-strand breaks and double-strand breaks were induced by endonucleases and by gamma-radiation. In spite of higher chemical modification of TRrDNA by arylazide and dimethylsulfate (because of high content of GC-pairs), under the following fragmentation TRrDNA was found to be more resistant to double-strand breaks than other studied DNA sequences. At the same time in the range of non-transcribing spacer (NTS) of ribosomal gene, the section with higher sensitivity to double-strand breaks was found. Higher resistance of TRrDNA to double breaks makes it possible to identify these fragments in cell material from different tissue after death or in DNA samples after prolonged storage. Resistance of TRrDNA to formation of double-strand breaks can be used for its detection in biological fluids after cell death, including the death initiated by ionizing radiation.  相似文献   

17.
Caffeine inhibited the elongation of nascent DNA and induced breaks in the template DNA of sulphur mustard-treated Chinese hamster cells. The sizes of template and nascent DNAs, as indicated by alkaline sucrose gradient sedimentation, were similar suggesting that incision of template DNA occurred opposite gaps formed in nascent DNA by the action of caffeine, forming, effectively, double-strand breaks in DNA. Double-strand break formation was demonstrated, by means of elution of labelled DNA through polycarbonate filters at neutral pH, in both sulphur mustard- and cisplatin-treated cells when they were incubated in the presence of caffeine for 24 h. Double-strand breaks were only formed in that DNA which had been replicated in the presence of caffeine after treatment with sulphur mustard or cisplatin. Non-toxic concentrations of cycloheximide abolished the potentiation by caffeine of sulphur mustard-induced toxicity to Chinese hamster cells and at the same time abolished the formation of the low molecular weight nascent DNA, and as a consequence of its inhibitory effect on DNA synthesis, and the formation of double-strand breaks in DNA. Potentiation of the lethal and clastogenic effects of genotoxic agents by caffeine is therefore due to effects on the rate and mode of DNA synthesis which lead finally to double-strand breaks in DNA.  相似文献   

18.
Visual quantification of DNA double-strand breaks in bacteria.   总被引:2,自引:0,他引:2  
In this paper, we describe a method for the visualization of double-strand breaks in a single electrostretched Escherichia coli DNA molecule. We also provide evidence that electrostretched or migrated DNA under neutral microgel electrophoresis conditions is made up of individual chromosomes. Using the neutral microgel electrophoresis technique, DNA migration (stretching) was measured and the number of DNA double-strand breaks were counted following exposure of E. coli cells to 0, 12.5, 25, 50, or 100 rad of X-rays. The use of an intense fluorescent dye, YOYO and custom-made slides have helped us in visualizing individual bacterial DNA molecules. Bacterial DNA appears similar in structure compared to electrostretched DNA from human lymphocytes. We were able to detect changes in DNA migration (stretching) induced by an X-ray dose as low as 12.5 rad and an increase in the number of DNA breaks induced by a dose as low as 25 rad. The extent of DNA migration and number of breaks were directly correlated to X-ray dosage.  相似文献   

19.
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.  相似文献   

20.
Mutants of Diplococcus pneumoniae that lack a membrane-localized DNAase are defective in transformation because entry of DNA into the cell is blocked. Such mutants still bind DNA on the outside of the cell. The bound DNA is double-stranded and its double-stranded molecular weight is unchanged. Its sedimentation behavior in alkali, however, shows that it has undergone single-strand breakage. The breaks are located randomly in both strands of the bound DNA at a mean separation of 2 × 106 daltons of single-stranded DNA. Both binding and single-strand breakage occur in the presence of EDTA. Single-strand breaks are similarly formed on binding of DNA to normally transformable cells in the presence of EDTA. The single-strand breaks appear to be a consequence of attachment. DNA may be bound to the cell surface at the point of breakage.A mutant that is partially blocked in entry also binds DNA mainly on the outside of the cell. In the presence of EDTA, DNA bound by this mutant undergoes only single-strand breaks. In the absence of EDTA, however, double-strand breaks occur, apparently as a result of the initiation of entry. It is possible that the double-strand breaks arise from additional single-strand breaks opposite those that occurred on binding. The double-strand breaks presumably result from action of the membrane DNAase as it begins to release oligonucleotides from one strand segment while drawing the complementary strand segment into the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号