首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus is a leading cause of catheter-related bloodstream infections and endocarditis. Both involve (i) biofilm formation, (ii) exposure to fluid shear, and (iii) high rates of dissemination. We found that viscoelasticity allowed S. aureus biofilms to resist detachment due to increased fluid shear by deformation, while remaining attached to a surface. Further, we report that S. aureus microcolonies moved downstream by rolling along the lumen walls of a glass flow cell, driven by the flow of the overlying fluid. The rolling appeared to be controlled by viscoelastic tethers. This tethered rolling may be important for the surface colonization of medical devices by nonmotile bacteria.  相似文献   

2.
Influence of cell deformation on leukocyte rolling adhesion in shear flow   总被引:9,自引:0,他引:9  
Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.  相似文献   

3.
Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 microns diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 microns diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.  相似文献   

4.
With the aid of a flow cell assembly the desorption of cationic liposomes prepared from mixtures of dipalmitoylphoshatidylcholine (DDPC), cholesterol, and either dimethyldioctadecylammonium bromide (DDAB) or 3,beta[N-(N1,N-dimethylethylenediamine)-carbamoyl]cholesterol (DC-chol) from immobilized biofilms of Staphylococcus aureus has been studied as a function of shear stress by confocal microscopy. A shear stress theory has been adapted from fluid mechanics of laminar flow between parallel plates and used to determine the critical shear stress for liposome desorption. The critical shear stress for both DDAB and DC-chol liposomes has been determined as a function of cationic lipid content and hence surface charge as reflected in their zeta potentials. The critical shear stress has been used to obtain the potential energy of liposome-biofilm interaction which together with the electrostatic interaction energy has enabled estimates of the London-Hamaker constants to be made. The values of the London-Hamaker constants at small liposome-bacterial cell separation were found to be independent of liposome composition.  相似文献   

5.
Li Q  Fang Y  Ding X  Wu J 《Experimental cell research》2012,318(14):1649-1658
E-selectin-mediated rolling on vascular surface of circulating leukocyte on vascular surface is a key initial event during inflammatory response and lymphocyte homing. This event depends not only on the specific interactions of adhesive molecules but also on the hemodynamics of blood flow. Little is still understood about whether wall shear stress or shear rate regulates the rolling. With flow chamber techniques, we here measured the effects of transport, shear stress and cell deformation on rolling of both unfixed and fixed HL-60 cells on E-selectin either in the absence or in the presence of 3% Ficoll in medium at various wall shear stresses from 0.05 to 0.7 dyn/cm(2). The results demonstrated a triphasic force-dependent rolling, that is, as increasing of force, the rolling would be accelerated firstly, then followed a decelerating phase occurred at the initial shear threshold of about 0.1 dyn/cm(2), and lastly returned to an accelerating process starting at the optimal shear threshold of 0.35 dyn/cm(2) approximately. The catch bond regime was completely reflected to rolling behaviors, such as tether lifetime, cell stop time and rolling velocity, meaning that the dominant factor to govern rolling is force. The initial shear threshold might be the minimum level of wall shear stress to sustain a stationary rolling, and the optimal shear threshold would make rolling to the most stable and regular. These findings strongly elucidate the catch bond mechanism for flow-enhanced rolling through E-selectin since longer bond lifetimes led to slower and stabler rolling.  相似文献   

6.
The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.  相似文献   

7.
Staphylococcus aureus is a major human pathogen that has been shown to bind collagen under static conditions. However, many staphylococcal infections are hematogenously acquired and adhesion events may be influenced by shear stress. In this study, we used a dynamic experimental system consisting of a parallel-plate perfusion chamber and phase-contrast video microscope to study the effects of shear stress on the adhesion kinetics of intact S. aureus to collagen surfaces in vitro. The adhesion of S. aureus Phillips to collagen types I, II, and IV was investigated over a physiologically relevant range of wall shear stresses at 37 degrees C. S. aureus PH100, a collagen adhesin-deficient mutant strain, was used as a control strain for the experiments. We found that S. aureus Phillips could adhere to collagens I, II, and IV at wall shear stresses less than 15 dyn/cm(2) and that the kinetics of the adhesion process were wall shear stress-dependent. Similar studies with PH100 demonstrated that these cells are unable to adhere firmly to collagen surfaces. Transient interactions between PH100 and the collagen surfaces were observed at low levels of shear stress suggesting that S. aureus may also interact with collagen by an alternative mechanism that does not lead to firm adhesion.  相似文献   

8.
Wu S  Hoxter B  Byers SW  Tozeren A 《Biorheology》1998,35(1):37-51
Recent mathematical models show that molecular events that mediate rolling interactions also have an impact on the stochastic features of rolling. In spherical cells, statistical fluctuations in cell displacement were shown to be an indication that only a few adhesion bonds are involved in rolling interactions. In this study, we investigated whether cell shape and cell deformability could also modulate the stochastic features of rolling. As an experimental model we considered the flow-initiated rolling of MCF-10 breast epithelial cells on laminin. The dynamic adhesion of MCF-10A cells to laminin, which involves integrin alpha 6 beta 4, occurs slow enough to allow for an accurate determination of the trajectories of rolling cells. The data from high-magnification videomicroscopy showed that cell shape, cell deformability, and the level of fluid shear stress were all strong determinants of the rolling velocity and the extent of fluctuations in the trajectory of rolling cells. MCF-10A cells with large surface projections rolled faster and wobbled more extensively than spherical cells under the same flow conditions. The extent of wobbling decreased and the variation of rolling velocity increased with increasing fluid shear stress. MCF-10A cells treated with cytochalasin B, which increased cell deformability and caused extensive blebbing without significantly altering surface expression of laminin integrins, reduced mean rolling velocity and increased its variance. Because leukocytes change shape as they roll in postcapillary blood venules at high shear rates, results indicate the need for further expanding the present biophysical models of rolling to the case of deformable cells.  相似文献   

9.
The interaction between surface components on the invading pathogen and host cells such as platelets plays a key role in the regulation of endovascular infections. However, the mechanisms mediating Staphylococcus aureus binding to platelets under shear remain largely unknown. This study was designed to investigate the kinetics and molecular requirements of platelet-S. aureus interactions in bulk suspensions subjected to a uniform shear field. Hydrodynamic shear-induced collisions augment platelet-S. aureus binding, which is further potentiated by platelet activation with stromal derived factor-1beta. Peak adhesion efficiency occurs at low shear (100 s(-1)) and decreases with increasing shear. The molecular interaction of platelet alpha(IIb)beta(3) with bacterial clumping factor A through fibrinogen bridging is necessary for stable bacterial binding to activated platelets under shear. Although this pathway is sufficient at low shear (相似文献   

10.
Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.  相似文献   

11.
In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.  相似文献   

12.
Fibroblast and Staphylococcus aureus detachment strength from orthopaedic alloys and a tissue culture plastic (Thermanox) have been investigated with jet impingement. For S. aureus, unlike fibroblasts, detachment is caused more by pressure than shear. For these biomaterials, detachment strength is much higher for S. aureus than fibroblasts. Comparing materials under equivalent flow conditions, S. aureus attach to stainless steel and titanium with equal strength and more strongly than to Thermanox. For fibroblasts, detachment strength from all materials was similar. Fibroblast detachment strength from these biomaterials substantially decreases with time at equal flow rates and increases with flow rate at equal exposure times. Detachment strength is very similar for 3T3 and L929 fibroblasts on Thermanox for equivalent flow rate/time combinations, though enhanced adhesion of 3T3 cells was often noted for metals. Time effects are less evident for S. aureus. S. aureus adhesion to metals is more affected by flow rate than fibroblast adhesion.  相似文献   

13.
Endothelial cells, covering the inner surface of vessels and the heart, are permanently exposed to fluid flow, which affects the endothelial structure and the function. The response of endothelial cells to fluid shear stress is frequently investigated in cone-plate systems. For this type of device, we performed an analytical and numerical analysis of the steady, laminar, three-dimensional flow of a Newtonian fluid at low Reynolds numbers. Unsteady oscillating and pulsating flow was studied numerically by taking the geometry of a corresponding experimental setup into account. Our investigation provides detailed information with regard to shear-stress distribution at the plate as well as secondary flow. We show that: (i) there is a region on the plate where shear stress is almost constant and an analytical approach can be applied with high accuracy; (ii) detailed information about the flow in a real cone-plate device can only be obtained by numerical simulations; (iii) the pulsating flow is quasi-stationary; and (iv) there is a time lag on the order of 10(-3) s between cone rotation and shear stress generated on the plate.  相似文献   

14.
Three-dimensional computational modeling and simulation are presented on the adhesive rolling of deformable leukocytes over a P-selectin coated surface in parabolic shear flow in microchannels. The computational model is based on the immersed boundary method for cell deformation and Monte Carlo simulation for receptor/ligand interaction. The simulations are continued for at least 1 s of leukocyte rolling during which the instantaneous quantities such as cell deformation index, cell/substrate contact area, and fluid drag remain statistically stationary. The characteristic ‘stop-and-go’ motion of rolling leukocytes, and the ‘tear-drop’ shape of adherent leukocytes as observed in experiments are reproduced by the simulations. We first consider the role of cell deformation and cell concentration on rolling characteristics. We observe that compliant cells roll slower and more stably than rigid cells. Our simulations agree with previous in vivo observation that the hydrodynamic interactions between nearby leukocytes affect cell rolling, and that the rolling velocity decreases inversely with the separation distance, irrespective of cell deformability. We also find that cell deformation decreases, and the cells roll more stably with reduced velocity fluctuation, as the cell concentration is increased. However, the effect of nearby cells on the rolling characteristics is found to be more significant for rigid cells than compliant cells. We then address the effect of cell deformability and rolling velocity on the flow resistance due to, and the fluid drag on, adherent leukocytes. While several earlier computational works have addressed this problem, two key features of leukocyte adhesion, such as cell deformation and rolling, were often neglected. Our results suggest that neglecting cell deformability and rolling velocity may significantly overpredict the flow resistance and drag force. Increasing the cell concentration is shown to increase the flow resistance and reduce the fluid drag. The reduced drag then results in slower and more stable rolling of the leukocytes with longer pause time and shorter step distance. But the increase/decrease in the flow resistance/fluid drag due to the increase in the cell concentration is observed to be more significant in case of rigid cells than compliant cells.  相似文献   

15.
Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane’s nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of \(3.75\, \upmu \hbox {m}\) were represented using an elastic membrane governed by a Mooney–Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of \(150\,\upmu \hbox {m}^{-2}\) under linear shear flow varying from 100 to \(400\,\hbox {s}^{-1}\). The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom surface of the capsule that is referred to as a dimple. In addition, the present study demonstrates that the average total bond force from the capsules lifetime increases by 37 % for the strain hardening capsules compared to elastic-plastic capsules at shear rate of \(400\,\hbox {s}^{-1}\). Finally, the model demonstrates the effect of finite membrane deformation on the coupling between hydrodynamic and receptor/ligand interaction.  相似文献   

16.
CD44 can function as an adhesion receptor that mediates leukocyte rolling on hyaluronan (HA). To study the contributions of different domains of the standard isoform of CD44 to cell rolling, a CD44-negative mouse T lymphoma AKR1 was transfected with wild type (WT) or mutated cDNA constructs. A parallel flow chamber was used to study the rolling behavior of CD44 transfectants on immobilized HA. For CD44WT transfectants, the fraction of cells that rolled and the rolling velocity was inversely proportional to the amount of cell surface CD44. When the cytoplasmic domain distal to Gly(305) or sequences that serve as binding sites for cytoskeletal linker proteins, were deleted or replaced with foreign sequences, no significant changes in the rolling behavior of mutant cells, compared with the transfectant expressing CD44WT, were observed. Transfectants lacking 64 amino acids of the cytoplasmic tail distal to Cys(295) adhered to HA but showed enhanced rolling at low shear forces. When 83 amino acids from the "non-conserved" membrane-proximal region of the CD44 extracellular domain were deleted, cells adhered firmly to the HA substrate and did not roll at any fluid shear force tested. Unlike wild type cells that exhibited a nearly homogeneous distribution of CD44 on a smooth cell surface, cells expressing the non-conserved region deletion mutant accumulated CD44 in membrane protrusions. Disruption of the actin cytoskeleton with cytochalasin B precluded the formation of membrane protrusions, however, treated cells still adhered firmly to HA and did not roll. We conclude that interaction between the cytoplasmic domain of CD44 and the cytoskeleton is not required for cell rolling on immobilized ligand. The strong effect of deletion of the non-conserved region of the extracellular domain argues for a critical role of this region in CD44-dependent rolling and adhesion interactions with HA under flow.  相似文献   

17.
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.  相似文献   

18.
Adhesion of platelets to sites of vascular injury is critical for hemostasis and thrombosis and is dependent on the binding of the vascular adhesive protein von Willebrand factor (vWf) to the glycoprotein (GP) Ib-V-IX complex on the platelet surface. A unique but poorly defined characteristic of this receptor/ligand interaction is its ability to support platelet adhesion under conditions of high shear stress. To examine the structural domains of the GPIb-V-IX complex involved in mediating cell adhesion under flow, we have expressed partial (GPIb-IX), complete (GPIb-V-IX), and mutant (GPIbalpha cytoplasmic tail mutants) receptor complexes on the surface of Chinese hamster ovary (CHO) cells and examined their ability to adhere to a vWf matrix in flow-based adhesion assays. Our studies demonstrate that the partial receptor complex (GPIb-IX) supports CHO cell tethering and rolling on a bovine or human vWf matrix under flow. The adhesion was specifically inhibited by an anti-GPIbalpha blocking antibody (AK2) and was not observed with CHO cells expressing GPIbbeta and GPIX alone. The velocity of rolling was dependent on the level of shear stress, receptor density, and matrix concentration and was not altered by the presence of GPV. In contrast to selectins, which mediate cell rolling under conditions of low shear (20-200 s-1), GPIb-IX was able to support cell rolling at both venous (150 s-1) and arterial (1500-10,500 s-1) shear rates. Studies with a mutant GPIbalpha receptor subunit lacking the binding domain for actin-binding protein demonstrated that the association of the receptor complex with the membrane skeleton is not essential for cell tethering or rolling under low shear conditions, but is critical for maintaining adhesion at high shear rates (3000-6000 s-1). These studies demonstrate that the GPIb-IX complex is sufficient to mediate cell rolling on a vWf matrix at both venous and arterial levels of shear independent of other platelet adhesion receptors. Furthermore, our results suggest that the association between GPIbalpha and actin-binding protein plays an important role in enabling cells to remain tethered to a vWf matrix under conditions of high shear stress.  相似文献   

19.
20.
The integrin lymphocyte function-associated antigen-1 (alpha(L)beta(2)), which is known for its ability to mediate firm adhesion and migration, can also contribute to tethering and rolling in shear flow. The alpha(L) I domain can be mutationally locked with disulfide bonds into two distinct conformations, open and closed, which have high and low affinity for the ligand intercellular adhesion molecule 1 (ICAM-1), respectively. The wild type I domain exists primarily in the lower energy closed conformation. We have measured for the first time the effect of conformational change on adhesive behavior in shear flow. We show that wild type and locked open I domains, expressed in alpha(L)beta(2) heterodimers or as isolated domains on the cell surface, mediate rolling adhesion and firm adhesion, respectively. alpha(L)beta(2) is thus poised for the conversion of rolling to firm adhesion upon integrin activation in vivo. Isolated I domains are surprisingly more effective than alpha(L)beta(2) in interactions in shear flow, which may in part be a consequence of the presence of alpha(L)beta(2) in a bent conformation. Furthermore, the force exerted on the C-terminal alpha-helix appears to stabilize the open conformation of the wild type isolated I domain and contribute to its robustness in supporting rolling. An allosteric small molecule antagonist of alpha(L)beta(2) inhibits both rolling adhesion and firm adhesion, which has important implications for its mode of action in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号