首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duff S  Chollet R 《Plant physiology》1995,107(3):775-782
Regulation of C3 phosphoenolpyruvate carboxylase (PEPC) and its protein-serine/threonine kinase (PEPC-PK) was studied in wheat (Triticum aestivum) leaves that were excised from low-N-grown seedlings and subsequently illuminated and/or supplied with 40 mM KNO3. The apparent phosphorylation status of PEPC was assessed by its sensitivity to L-malate inhibition at suboptimal assay conditions, and the activity state of PEPC-PK was determined by the in vitro 32P labeling of purified maize dephospho-PEPC by [[gamma]-32P]ATP/Mg. Illumination ([plus or minus]NO3-) for 1 h led to about a 4.5-fold increase in the 50% inhibition constant for L-malate, which was reversed by placing the illuminated detached leaves in darkness (minus NO3-). A 1 -h exposure of excised leaves to light, KNO3, or both resulted in relative PEPC-PK activities of 205, 119, and 659%, respectively, of the dark/0 mM KNO3 control tissue. In contrast, almost no activity was observed when a recombinant sorghum phosphorylation-site mutant (S8D) form of PEPC was used as protein substrate in PEPC-PK assays of the light plus KNO3 leaf extracts. In vivo labeling of wheat-leaf PEPC by feeding 32P-labeled orthophosphate showed that PEPC from light plus KNO3 tissue was substantially more phosphorylated than the enzyme in the dark minus-nitrate immunoprecipitates. Immunoblot analysis indicated that no changes in relative PEPC-protein amount occurred within 1 h for any of the treatments. Thus, C3 PEPC activity in these detached wheat leaves appears to be regulated by phosphorylation of a serine residue near the protein's N terminus by a Ca2+ -independent protein kinase in response to a complex interaction in vivo between light and N.  相似文献   

2.
N Ogawa  S Okumura  K Izui 《FEBS letters》1992,302(1):86-88
In C4 plants the activity of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is regulated by phosphorylation/dephosphorylation which is mediated by light/dark signals. The study using protein kinase inhibitors showed that the inhibition pattern of maize PEPC-protein kinase (PEPC-PK) is similar to that of myosin light chain kinase, a Ca(2+)-calmodulin-dependent PK. The kinase activity was also inhibited by EGTA and the inhibition was relieved by Ca2+. These results suggest that PEPC-PK is Ca(2+)-dependent in contrast with previous observations by other research groups.  相似文献   

3.
C4 leaf phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is subject to a day/night regulatory phosphorylation cycle. By using the cytoplasmic protein synthesis inhibitor cycloheximide (CHX), we previously reported that the reversible in vivo light activation of the C4 PEPC protein-serine kinase requires protein synthesis. In the present leaf gas-exchange study, we have examined how and to what extent the CHX-induced inhibition of PEPC protein kinase activity/PEPC phosphorylation in the light influences C4 photosynthesis. Detached Sorghum vulgare and maize (Zea mays) leaves fed 10 [mu]M CHX showed a gradual but marked decrease in photosynthetic CO2 assimilation capacity. A series of control experiments designed to assess deleterious secondary effects of the inhibitor established that this reduction in C4 leaf CO2 assimilation was not due to (a) an increased stomatal resistance to CO2 diffusion, (b) a decrease in the activation state of other photoactivated C4 cycle enzymes, and (c) a perturbation of the Benson-Calvin C3 cycle, as evidenced by the absence of an inhibitory effect of CHX on leaf photosynthesis by a C3 grass (Triticum aestivum). It is notable that the CHX-induced decrease in CO2 assimilation by illuminated Sorghum leaves was highly correlated with a decrease in the apparent phosphorylation status of PEPC and a concomitant change in carbon isotope discrimination consistent with a shift from a C4 to a C3 mode of leaf CO2 fixation. These collective findings indicate that the light-dependent activation of the PEPC protein-serine kinase and the resulting phosphorylation of serine-8 or serine-15 in Sorghum or maize PEPC, respectively, are fundamental regulatory events that influence leaf C4 photosynthesis in vivo.  相似文献   

4.
Regulation of the light activation of C4 phosphoenolpyruvate-carboxylase (PEPC) protein kinase (PEPC-PK) and the ensuing phosphorylation of its cytosolic target protein were studied in intact mesophyll cells (MC) and protoplasts (MP) isolated from dark-adapted leaves of Digitaria sanguinalis [L.] Scop, (hairy crabgrass). The apparent in-situ phosphorylation state of PEPC (EC 4.1.1.31) was assessed by the sensitivity of its activity in desalted MC- and MP-extracts to l-malate under suboptimal assay conditions, while the activity-state of PEPC-PK was determined by in-vitro 32P-labeling of purified maize or recombinant sorghum PEPC by these extracts. In-situ pretreatment of intact MC at pH 8.0 by illumination and calcium addition led to significant decreases in PEPC malate sensitivity and increases in PEPC-kinase activity that were negated by the addition of EGTA to the external cell medium. Similarly, in-situ pretreatment of MP with light plus NH4Cl at pH 7.6 led to significant decreases in malate sensitivity which did not occur when a Ca2+ ionophore and EGTA were included in the suspension medium. In contrast, neither EGTA nor exogenous Ca2+ had a major direct effect on the in-vitro activity of PEPC-PK extracted from Digitaria MC and MP. Preincubation of intact MC with 5 mM 3-phosphoglycerate or pyruvate at pH 8.0 in the dark led to significant decreases in PEPC malate sensitivity and increases in PEPC-PK activity which were not observed with various other exogenous metabolites. These collective in-situ experiments with isolated C4 MC and MP (i) support our earlier hypothesis that alkalization of cytosolic pH is involved in the PEPC-PK signal-transduction cascade (see J.-N. Pierre et al., Eur J Biochem, 1992,210: 531–537), (ii) suggest that intracellular calcium is involved in the PEPC-kinase signal-transduction chain, but at a step upstream of PEPC-PK per se, and (iii) provide direct evidence that the bundle-sheath-derived, C4-pathway intermediates 3-PGA and/or pyruvate also play a role in this signal-transduction cascade which ultimately effects the up-regulation of PEPC in the C4 mesophyll cytosol.Abbreviations BS bundle-sheath - CAM Crassulacean acid metabolism - DHAP dihydroxyacetone phosphate - FPLC fast-protein liquid chromatography - Glc6P glucose 6-phosphate - I0.5 50% inhibition constant - MC mesophyll cell(s) - MP me-sophyll protoplast(s) - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC protein-Ser/Thr kinase - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - Pyr pyruvate - Ser serine The authors thank Ms. Jill Myatt for her help with some of the MC preparations. This work was supported in part by grants INT-9115566 and MCB-9315928 from the U.S. National Science Foundation (to R.C.). S.M.G.D. was a recipient of an NSERC of Canada Post-Doctoral Fellowship. This paper is Journal Series No. 11 395 of the University of Nebraska Agricultural Research Division.  相似文献   

5.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   

6.
7.
C4 phosphoenolpyruvate carboxylase (PEPC) is post-translationally regulated by reversible phosphorylation of a specific N-terminal seryl residue in response to light/dark transitions of the parent leaf tissue. The protein-serine kinase (PEPC-PK) that phosphorylates/activates this mesophyll-cytoplasm target enzyme is slowly, but strikingly, activated by high light and inactivated in darkness in vivo by a mechanism involving cytoplasmic protein synthesis/degradation as a primary component. In this report, evidence is presented indicating that the inhibition of Calvin cycle activity by a variety of mesophyll (3-(3,4-dichlorophenyl)-1,1-dimethylurea, isocil, methyl viologen) and bundle sheath (dl-glyceraldehyde)-directed photosynthesis inhibitors blocks the light activation of maize (Zea mays L.) PEPC-PK and the ensuing regulatory phosphorylation of its target enzyme in vivo. Based on these and related observations, we propose that the Calvin cycle supplies the C4 mesophyll cell with (a) a putative signal (e.g. phosphorylated metabolite, amino acid) that interacts with the cytoplasmic protein synthesis event to effect the light activation of PEPC-PK and the concomitant phosphorylation of PEPC, and (b) high levels of known positive effectors (e.g. triose-phosphate, glucose-6-phosphate) that interact directly with the carboxylase. The combined result of this complex regulatory cascade is to effectively desensitize PEPC to feedback inhibition by the millimolar levels of l-malate required for rapid diffusive transport to the bundle sheath during high rates of C4 photosynthesis.  相似文献   

8.
The activity of phosphoenolpyruvate carboxylase (PEPC, EC4.1.1.31) for the C4 photosynthesis is known to be regulated mainly in response to light/dark transitions through reversible phosphorylation by a specific protein kinase (PK). PEPC-PK with an M(r) of 30 kDa was purified about 1.4 million-fold to homogeneity from maize leaves and characterized. The purified PEPC-PK was readily inactivated under mild oxidative conditions, but the activity could be recovered by dithiothreitol (DTT). The recovery by DTT was strongly accelerated by thioredoxin (Trx) from E. coli. Trxs of plant origin such as Trx-m from spinach chloroplast and Trx-h from rice cytoplasm were also effective. These results suggest the possibility of PEPC-PK being redox-regulated via Trx in vivo.  相似文献   

9.
Dong L  Ermolova NV  Chollet R 《Planta》2001,213(3):379-389
The activity and allosteric properties of plant phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) are controlled posttranslationally by specific reversible phosphorylation of a strictly conserved serine residue near the N-terminus. This up/down-regulation of PEPC is catalyzed by a dedicated and highly regulated serine/threonine (Ser/Thr) kinase (PEPC-kinase) and an opposing type-2A Ser/Thr phosphatase (PP2A). In marked contrast to PEPC-kinase, the PP2A holoenzyme from photosynthetic tissue has been virtually unstudied to date. In the present investigation, we have partially purified and characterized the native form of this PP2A from illuminated leaves of maize (Zea mays L.), a C4 plant, using maize [32P]PEPC as substrate. Various conventional chromatographic matrices, together with thiophosphorylated C4 PEPC-peptide and microcystin-LR affinity-supports, were exploited for the enrichment of this PP2A from soluble leaf extracts. Biochemical and immunological results indicate that the C4-leaf holoenzyme is analogous to other eukaryotic PP2As in being a approximately 170-kDa heteromer comprised of a core PP2Ac-A heterodimer (approximately 38- and approximately 65-kDa subunits, respectively) complexed with a putative, approximately 74-kDa B-type regulatory/targeting subunit. This heterotrimer lacks any strict substrate specificity in that it dephosphorylates C4 PEPC, mammalian phosphorylase a, and casein in vitro. This activity is independent of free Me2+, insensitive to levamisole and the Inhibitor-2 protein that targets PP1, activated by several polycations such as protamine and poly-L-lysine, and highly sensitive to inhibition by microcystin-LR and okadaic acid (IC50 approximately 30 pM), all of which are diagnostic features of yeast and mammalian PP2As. In addition, this C4-leaf PP2A holoenzyme (i) is inhibited in vitro by physiological concentrations of certain C4 PEPC-related metabolites (L-malate, PEP, glucose 6-phosphate, but not the activator glycine) when either 32P-labeled maize PEPC or rabbit muscle phosphorylase a is used as substrate, suggesting a direct effect on this Ser/Thr phosphatase; and (ii) displays, at best, only modest light/dark effects in vivo on its apparent molecular mass, component core subunits and activity against C4 PEPC, in marked contrast to the opposing activity of PEPC-kinase in C4 and Crassulacean acid metabolism leaves. This report represents one of the few studies of a heteromeric PP2A holoenzyme from photosynthetic tissue that dephosphorylates a known target enzyme in plants, such as PEPC, sucrose-phosphate synthase or nitrate reductase.  相似文献   

10.
Parvathi  K.  Gayathri  J.  Maralihalli  G.B.  Bhagwat  A.S.  Raghavendra  A.S. 《Photosynthetica》2000,38(1):23-28
PEP carboxylase (PEPC) in leaves of C4 plants is activated by phosphorylation of enzyme by a PEPC-protein kinase (PEPC-PK). We reevaluated the pattern of PEPC phosphorylation in leaf extracts of Amaranthus hypochondriacus. It was dependent on Ca2+, the optimum concentration of which for stimulation was 10 mM. The extent of stimulation was inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA), a Ca2+ chelator. The inhibition by BAPTA was relieved by the addition of Ca2+ but not by the addition of Mg2+. The stimulation by Ca2+ of PEPC phosphorylation was marginally enhanced by calmodulin (CaM), but not by diacylglycerol (DAG). Phosphorylation was strongly restricted by Ca2+ or Ca2+-CaM-dependent protein kinase inhibitors. Thus phosphorylation of PEPC is Ca2+-dependent in leaves of A. hypochondriacus and a calcium-dependent protein kinase (CDPK) may modulate PEPC-PK and subsequently the phosphorylation status of PEPC.  相似文献   

11.
Phosphoenolpyruvate carboxylase (PEPC) was characterized in extracts from C4 mesophyll protoplasts isolated from Digitaria sanguinalis leaves and shown to display the structural, functional, and regulatory properties typical of a C4 PEPC. In situ increases in the apparent phosphorylation state of the enzyme and the activity of its Ca2+-independent protein-serine kinase were induced by light plus NH4Cl or methylamine. The photosynthesis-related metabolite 3-phosphoglycerate (3-PGA) was used as a substitute for the weak base in these experiments. The early effects of light plus the weak base or 3-PGA treatment were alkalinization of protoplast cytosolic pH, shown by fluorescence cytometry, and calcium mobilization from vacuoles, as suggested by the use of the calcium channel blockers TMB-8 and verapamil. The increases in PEPC kinase activity and the apparent phosphorylation state of PEPC also were blocked in situ by the electron transport and ATP synthesis inhibitors DCMU and gramicidin, respectively, the calcium/calmodulin antagonists W7, W5, and compound 48/80, and the cytosolic protein synthesis inhibitor cycloheximide. These results suggest that the production of ATP and/or NADPH by the illuminated mesophyll chloroplast is required for the activation of the transduction pathway, which presumably includes an upstream Ca2+-dependent protein kinase and a cytosolic protein synthesis event. The collective data support the view that the C4 PEPC light transduction pathway is contained entirely within the mesophyll cell and imply cross-talk between the mesophyll and bundle sheath cells in the form of the photosynthetic metabolite 3-PGA.  相似文献   

12.
Illumination increased markedly the affinity to bicarbonate of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) in leaves of Amaranthus hypochondriacus L., a C4 plant. When leaves were illuminated, the apparent Km for (HCO3-) of PEPC decreased by about 50% concurrent with a 2- to 5-fold increase in Vmax and 3- to 4-fold increase in Ki for malate. The inclusion of ethoxyzolamide, an inhibitor of carbonic anhydrase, during the assay had no effect on kinetic and regulatory properties of PEPC indicating that carbonic anhydrase was not involved during light-induced sensitization of PEPC to HCO3-. Pretreatment of leaf discs with cycloheximide (CHX), a cytosolic protein synthesis inhibitor, suppressed significantly the light-enhanced decrease in apparent Km (HCO3-). Further, in vitro phosphorylation of purified dark-form PEPC by protein kinase A (PKA) decreased the apparent Km (HCO3-) of the enzyme, in addition increasing Ki (malate) as expected. Such changes, due to in vitro phosphorylation of purified PEPC by PKA, occurred only with wild-type PEPC, but not in the mutant form of maize (S15D) which is already a mimic of the phosphorylated enzyme. These results suggest that phosphorylation of the enzyme is important during the sensitization of PEPC to HCO3- by illumination in C4 leaves. Since illumination is expected to increase the cytosolic pH and the availability of dissolved HCO3- in mesophyll cells, the sensitization by light of PEPC to HCO3- could be physiologically quite significant.  相似文献   

13.
14.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   

15.
Kinetic analyses were performed on the nonphosphorylated and in vitro phosphorylated forms of recombinant Sorghum C4 phospho enolpyruvate carboxylase (C4 PEPC). The native enzyme was purified by immunoaffinity chromatography and its integrity demonstrated by Western blot analyses using anti N- and C-terminus antibodies. At suboptimal pH (7.1 to 7.3) and PEP concentration (2.5 mM), phosphorylation, positive metabolite effectors e.g., glucose-6-phosphate, glycine and dihydroxyacetone-phosphate, or an increase in pH strongly activated the enzyme and lowered the inhibitory effect of L-malate. C4 PEPC phosphorylation strengthened the effect of the positive effectors thereby decreasing further the enzyme's sensitivity to this inhibitor. L-malate also decreased the phosphorylation rate of C4 PEPC, a process antagonized by positive metabolite effectors. This was shown both in vitro, in a reconstituted phosphorylation assay containing the catalytic subunit of a cAMP-dependent protein kinase or the Sorghum leaf PEPC-PK and in situ, during induction of C4 PEPC phosphorylation in mesophyll cell protoplasts.  相似文献   

16.
In Crassulacean acid metabolism (CAM) plants, phosphoenolpyruvate carboxylase (PEPC) is subject to day-night regulatory phosphorylation of a conserved serine residue in the plant enzyme's N-terminal domain. The dark increase in PEPC-kinase (PEPC-k) activity is under control of a circadian oscillator, via the enhanced expression of the corresponding gene (1). The signaling cascade leading to PEPC-k up-regulation was investigated in leaves and mesophyll cell protoplasts of the facultative, salt-inducible CAM species, Mesembryanthemum crystallinum. Mesophyll cell protoplasts had the same PEPC-k activity as leaves from which they were prepared (i.e., high at night, low during the day). However, unlike C(4) protoplasts (2), CAM protoplasts did not show marked PEPC-k up-regulation when isolated during the day and treated with a weak base such as NH(4)Cl. Investigations using various pharmacological reagents established the operation, in the darkened CAM leaf, of a PEPC-k cascade including the following components: a phosphoinositide-dependent phospholipase C (PI-PLC), inositol 1,4,5 P (IP(3))-gated tonoplast calcium channels, and a putative Ca(2+)/calmodulin protein kinase. These results suggest that a similar signaling machinery is involved in both C(4) (2, 3) and CAM plants to regulate PEPC-k activity, the phosphorylation state of PEPC, and, thus, carbon flux through this enzyme during CAM photosynthesis.  相似文献   

17.
The phosphoenolpyruvate carboxylase (PEPC) isozyme involved in C4 photosynthesis is known to undergo reversible regulatory phosphorylation under illuminated conditions, thereby decreasing the enzyme's sensitivity to its feedback inhibitor, L-malate. For the direct assay of this phosphorylation in intact maize leaves, phosphorylation state-specific antibodies to the C4-form PEPC were prepared. The antibodies were raised in rabbits against a synthetic phosphorylated 15-mer peptide with a sequence corresponding to that flanking the specific site of regulatory phosphorylation (Ser15) and subsequently purified by affinity-chromatography. Specificity of the resulting antibodies to the C4-form PEPC phosphorylated at Ser15 was established on the basis of several criteria. The antibodies did not react with the recombinant root-form of maize PEPC phosphorylated in vitro. By the use of these antibodies, the changes in PEPC phosphorylation state were semi-quantitatively monitored under several physiological conditions. When the changes in PEPC phosphorylation were monitored during the entire day with mature (13-week-old) maize plants grown in the field, phosphorylation started before dawn, reached a maximum by mid-morning, and then decreased before sunset. At midnight dephosphorylation was almost complete. The results suggest that the regulatory phosphorylation of C4-form PEPC in mature maize plants is controlled not only by a light signal but also by some other metabolic signal(s). Under nitrogen-limited conditions the phosphorylation was enhanced even though the level of PEPC protein was decreased. Thus there seems to be some compensatory regulatory mechanism for the phosphorylation.  相似文献   

18.
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.Abbreviations CAM Crassulacean acid metabolism - G-6-P glucose-6-phosphate - PMSF phenylmethylsulfonyl fluoride - PEPC phosphoenolpyruvate carboxylase - PEPC-PK phosphoenolpyruvate ca carboxylase-protein kinase  相似文献   

19.
Higher plant phosphoenolpyruvate carboxylase (PEPC) is subject to in vivo phosphorylation of a regulatory serine located in the N-terminal domain of the protein. Studies using synthetic peptide substrates and mutated phosphorylation domain photosynthetic PEPC (C4 PEPC) suggested that the interaction of phosphoenolpyruvate carboxylase kinase (PEPCk) with its target was not restricted to this domain. However, no further information was available as to where PEPCk-C4 PEPC interactions take place. In this work, we have studied the possible interaction of the conserved 19-amino acid C-terminal sequence of sorghum (Sorghum vulgare Pers cv Tamaran) C4 PEPC with PEPCk. In reconstituted assays, a C-terminal synthetic peptide containing this sequence (peptide C19) was found to inhibit the phosphorylation reaction by the partially purified Ca2+-independent PEPCk (50% inhibition of initial activity = 230 microm). This effect was highly specific because peptide C19 did not alter C4 PEPC phosphorylation by either a partially purified sorghum leaf Ca2+-dependent protein kinase or the catalytic subunit of mammalian protein kinase A. In addition, the Ca2+-independent PEPCk was partially but significantly retained in affinity chromatography using a peptide C19 agarose column. Because peptide C15 (peptide C19 lacking the last four amino acids, QNTG) also inhibited C4 PEPC phosphorylation, it was concluded that the amino acid sequence downstream from the QNTG motif was responsible for the inhibitory effect. Specific antibodies raised against peptide C19 revealed that native C4 PEPC could be in two different conformational states. The results are discussed in relation with the reported crystal structure of the bacterial (Escherichia coli) and plant (maize [Zea mays]) enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号