首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Understanding Marine Mussel Adhesion   总被引:2,自引:0,他引:2  
In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.  相似文献   

2.
The freshwater zebra mussel (Dreissena polymorpha) owes a large part of its success as an invasive species to its ability to attach to a wide variety of substrates. As in marine mussels, this attachment is achieved by a proteinaceous byssus, a series of threads joined at a stem that connect the mussel to adhesive plaques secreted onto the substrate. Although the zebra mussel byssus is superficially similar to marine mussels, significant structural and compositional differences suggest that further investigation of the adhesion mechanisms in this freshwater species is warranted. Here we present an ultrastructural examination of the zebra mussel byssus, with emphasis on interfaces that are critical to its adhesive function. By examining the attached plaques, we show that adhesion is mediated by a uniform electron dense layer on the underside of the plaque. This layer is only 10-20 nm thick and makes direct and continuous contact with the substrate. The plaque itself is fibrous, and curiously can exhibit either a dense or porous morphology. In zebra mussels, a graded interface between the animal and the substrate mussels is achieved by interdigitation of uniform threads with the stem, in contrast to marine mussels, where the threads themselves are non-uniform. Our observations of several novel aspects of zebra mussel byssal ultrastructure may have important implications not only for preventing biofouling by the zebra mussel, but for the development of new bioadhesives as well.  相似文献   

3.
The green mussel Perna viridis LINNE can be kept in simulated seawater for more than 6 months in good condition. The mussel forms many threads by secreting an adhesive protein from the foot, and attaches with more than 50 byssal threads, which makes most mussels clump together. In order to investigate the preparation of the antifouling surfaces toward green mussels, the attachment of mussels was tested using glass surfaces modified with silane coupling agents, together with non-treated material surfaces such as glass and silicone. The correlation between the attachment percentage and the mean number of the secreted byssus was highly significant, indicating that the mussel selects a favorable surface prior to the secretion of byssus. The relationships between the mussel attachment and the surface chemical parameters (surface free energy (sfe) and its dispersion and polar components) were examined based on a working hypothesis, which we have previously reported. The result of statistical regression test indicated that a certain correlation was found between the dispersion component and the mussel attachment, while the polar component did not correlate to the mussel attachment. The present surface chemical approach provided an additional clue for the preparation of ecologically clean antifouling materials that takes into account the combination of the wettability of both the marine adhesive proteins (MAP) and the modified surfaces.  相似文献   

4.
Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.  相似文献   

5.
Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments.  相似文献   

6.
Polyphosphoprotein from the adhesive pads of Mytilus edulis   总被引:4,自引:0,他引:4  
Waite JH  Qin X 《Biochemistry》2001,40(9):2887-2893
Achieving a satisfactory biochemical explanation for the opportunistic underwater adhesion of marine invertebrates such as mussels and barnacles requires a detailed characterization of proteins extracted from holdfast structures produced by these organisms. Mefp-5 is an adhesive protein derived from the foot of the common mussel, Mytilus edulis, and deposited into the byssal attachment pads. Purification and primary structure of mefp-5 was determined by peptide mapping and cDNA sequencing. The protein is 74 residues long and has a mass of about 9500 Da. Mefp-5 composition shows a strong amino acid bias: aromatic amino acids, lysine, and glycine represent 65 mol % of the composition. More than a third of all the residues in the protein are posttranslationally modified by hydroxylation or phosphorylation. The conversion of tyrosine to 3, 4-dihydroxyphenyl-L-alanine (DOPA) and serine to O-phosphoserine accounts for the hydroxylation and phosphorylation, respectively. Neither modification is complete since variations in the extent of phosphorylation and hydroxylation can be detected by mass spectrometry. More than 75% of the DOPA is adjacent to basic residues, e.g., Lys-DOPA and DOPA-Lys. Phosphoserine occurs in sequences strikingly reminiscent of acidic mineral-binding motifs that appear in statherin, osteopontin, and others. This may be an adaptation for adhesion to the most common substrata for mussels, i.e., calcareous materials.  相似文献   

7.
The freshwater zebra mussel, Dreissena polymorpha, is an invasive, biofouling species that adheres to a variety of substrates underwater, using a proteinaceous anchor called the byssus. The byssus consists of a number of threads with adhesive plaques at the tips. It contains the unusual amino acid 3, 4-dihydroxyphenylalanine (DOPA), which is believed to play an important role in adhesion, in addition to providing structural integrity to the byssus through cross-linking. Extensive DOPA cross-linking, however, renders the zebra mussel byssus highly resistant to protein extraction, and therefore limits byssal protein identification. We report here on the identification of seven novel byssal proteins in the insoluble byssal matrix following protein extraction from induced, freshly secreted byssal threads with minimal cross-linking. These proteins were identified by LC-MS/MS analysis of tryptic digests of the matrix proteins by spectrum matching against a zebra mussel cDNA library of genes unique to the mussel foot, the organ that secretes the byssus. All seven proteins were present in both the plaque and thread. Comparisons of the protein sequences revealed common features of zebra mussel byssal proteins, and several recurring sequence motifs. Although their sequences are unique, many of the proteins display similarities to marine mussel byssal proteins, as well as to adhesive and structural proteins from other species. The large expansion of the byssal proteome reported here represents an important step towards understanding zebra mussel adhesion.  相似文献   

8.
The acellular attachment organ (byssus) of the marine mussel Mytilus edulis L. is composed of threads that emanate from the body of the mussel to adhesive discs that anchor the threads to rocks, sand and other mussels. Three proteins have been purified by immunohistological methods and located to specific regions of the byssus. A collagenous protein with subunit molecular weights of 53,000, 55,000 and 65,000 is found in the matrix of the elastic thread region. Its 73,000-MW precursor was extracted from foot glands in the area proximal to the animal body and was identified by immune cross-reactivity. A cystine-rich, acidic protein was found in all regions of the byssus associated with a third protein, the polyphenolic protein. The L-dopa-containing polyphenolic protein appears in the cortex of the entire thread and adhesive plaque and at the substrate-plaque interface. Antiserum to this protein stains spherical vesicles in the phenol gland of the foot. Using immuno-electrophoretic methods, the polyphenolic protein and the cystine-rich protein were shown to form high molecular weight aggregates with aging of the byssus.  相似文献   

9.
Increased vitellogenin (vtg) levels in the blood of male fish are frequently used as an indicator of estrogenic exposure. Similar responses are expected for mussels, where the concentration of vtg-like proteins has been reported to depend on estrogens. To verify the role of hemolymph during vitellogenesis of mussels, the saltwater mussel Mytilus edulis and the freshwater mussel Anodonta cygnea were exposed to 17beta-estradiol (E2) and wastewater treatment plant effluents, known for their estrogenic potential. Gel electrophoresis did not reveal any significant induction (or repression) of plasma proteins compared to control plasma. Our results do not support the hypothesis that mussel hemolymph is a carrier of estrogen-dependent major egg-yolk precursors (vtg-like proteins). However, additional information on a 35+/-2-kDa hemolymph protein, previously reported to bind heavy metals, was obtained by high-resolution two-dimensional electrophoresis. It was resolved in a cluster of single proteins with properties that match the characteristics of a previously reported histidine-rich glycoprotein.  相似文献   

10.
多巴(3,4-1-dihydroxyphenylalanine,DOPA)是贻贝足丝粘附蛋白中的一种特殊的氨基酸,由酪氨酸经羟化后生成,与贻贝足丝粘附蛋白的强粘附性能具有直接联系.目前,已鉴定的多种贻贝足丝蛋白序列中均发现有不同含量的DOPA存在.蛋白中DOPA的定量检测对于了解DOPA在蛋白粘附中的作用以及粘附蛋白的...  相似文献   

11.
The adhesion of Perna canaliculus mussel larvae on a germanium (Ge) prism in filtered seawater at 16 degrees C has been investigated by in situ attenuated total reflection infrared (ATR-IR) spectroscopy. The adhesive from the mussel larvae was spectrally monitored over 2 h and the IR spectrum showed its glycoproteinaceous nature with sulphated and carboxylated moieties. The adhesive from the mussel larvae differs from that of the adults, resembling the mucus secretion found in other benthic marine species at a larval stage. To date, this appears to be the first work describing the main chemical features of secreted adhesive associated with the primary settlement of mussel larvae. The acquired knowledge on the larval adhesive features may lead to enhanced settling methods in aquaculture or to antibiofouling strategies. The ATR-IR approach under temperature control is potentially useful for such studies on other small benthic organisms in both marine and freshwater environments.  相似文献   

12.
In Limfjorden, Denmark, an extensive mussel fishery exploits the wild stocks of Mytilus edulis with annual landings of 80,000–100,000 t of mussels. During the last 10 years the impact of mussel dredging on the ecosystem has been studied, including the effect of resuspension of sediment and nutrients and the impoverishment of in- and epi-fauna assemblages. Furthermore, dredging changes the physical structure and complexity of the seabed which affects mussel growth and interactions among zoobenthic species. The blue mussel constitutes the dominant fraction of the zoobenthic suspension feeders, and is important for the transport of material and energy from the pelagic to benthic systems and the control of phytoplankton biomass. In order to evaluate the impact on clearance capacity of a reduction in mussel densities due to mussel dredging, mussel filtration activity measured in situ has been related to the mixing of the water column and the amount of near-bed phytoplankton. Fishery practice for mussel dredging in Limfjorden is discussed in relation to its known impact on the ecosystem and the ecological role of the mussels, and modifications towards an ecosystem management approach and a more sustainable fishery are suggested. The suggested modifications include: a fishery practice where the mussel beds are thinned out when the mussels have attained good quality, and a transplantation practice of mussels from areas with a high mortality to areas with a high growth rate. Both practices intensify the production in a certain area, leaving other areas open for alternative production or for permanent closure for the benefit of the benthic flora and fauna. In addition, other shellfish species represent interesting new resources for fishing or aquaculture. Habitat restoration, such as the relaying of mussel shells from the mussel industry, is another important management tool that should be included in an ecosystem management approach of the mussel fishery. Electronic Publication  相似文献   

13.
The adsorption of proteins at solid–liquid interfaces is important in biosensor and biomaterial applications. Marine mussels affix themselves to surfaces using a highly cross‐linked, protein‐based adhesive containing a high proportion of L‐3,4‐dihydroxyphenylalanine (DOPA) residues. In this work, the effect of DOPA residues on protein adhesion on stainless steel surfaces was studied using a quartz crystal microbalance with dissipation system. The adsorption of two repetitive peptide motifs, KGYKYYGGSS and KGYKYY, from the mussel Mytilus edulis foot protein 5 on stainless steel was studied before and after chemo‐enzymatic modification of tyrosine residues to DOPA using mushroom tyrosinase. Conversion from tyrosine to DOPA, evaluated by HPLC, was in the range 70–99%. DOPA‐modified sequences showed fourfold greater adhesion than unmodified M. edulis foot protein 5 motifs. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
3, 4-Dihydroxyphenylanine (Dopa)-containing proteins are key to wet adhesion in mussels and possibly other sessile organisms also. However, Dopa-mediated adhesive bonding is a hard act to follow in that, at least in mussels, bonding depends on Dopa in both reduced and oxidized forms, for adhesion and cohesion, respectively. Given the vulnerability of Dopa to spontaneous oxidation, the most significant challenge to using it in practical adhesion is controlling Dopa redox in a temporally- and spatially defined manner. Mussels appear to achieve such control in their byssal attachment plaques, and factors involved in redox control can be measured with precision using redox probes such as the diphenylpicryl hydrazyl (DPPH) free radical. Understanding the specifics of natural redox control may provide fundamentally important insights for adhesive polymer engineering and antifouling strategies.  相似文献   

15.
SC Nicklisch  JH Waite 《Biofouling》2012,28(8):865-877
3, 4-Dihydroxyphenylanine (Dopa)-containing proteins are key to wet adhesion in mussels and possibly other sessile organisms also. However, Dopa-mediated adhesive bonding is a hard act to follow in that, at least in mussels, bonding depends on Dopa in both reduced and oxidized forms, for adhesion and cohesion, respectively. Given the vulnerability of Dopa to spontaneous oxidation, the most significant challenge to using it in practical adhesion is controlling Dopa redox in a temporally- and spatially defined manner. Mussels appear to achieve such control in their byssal attachment plaques, and factors involved in redox control can be measured with precision using redox probes such as the diphenylpicryl hydrazyl (DPPH) free radical. Understanding the specifics of natural redox control may provide fundamentally important insights for adhesive polymer engineering and antifouling strategies.  相似文献   

16.
Nutrient loads and nutrient cycling, especially of phosphorus and nitrogen, are among the most important controls on the character of freshwater ecosystems and have been greatly affected by human actions. Despite the widespread importance of nutrients in freshwater ecosystems, the varied linkages between nutrient cycling and freshwater mussel populations have not been thoroughly described. Here, I explore three of these linkages. First, I suggest that nutrient loads are related to the well-being of mussel populations through several mechanisms, probably producing a nonlinear and non-monotonic relationship between nutrient loads and mussel populations. Second, I discuss the ability of mussels to spatially focus nutrients from the overlying water onto the sediments, which has not been fully appreciated, perhaps because nutrient cycling has been viewed chiefly from the viewpoint of the well-mixed water column rather than the patchy sediments. Third, I discuss the ability of mussel populations to accumulate and release nutrients, introducing time lags into nutrient dynamics and stoichiometry (“nutrient capacitance”). Finally, I propose a speculative analysis of the role of freshwater mussels in the nutrient cycles of pristine river systems, which must have been much greater than in modern rivers, with their high nutrient loads and depleted mussel populations.  相似文献   

17.
贻贝足丝及其足丝蛋白相关研究对于开发新型水下生物粘附剂具有重要的仿生学意义。足丝蛋白在其粘附过程中需要维持一定的还原态,而目前已报道的足丝抗氧化蛋白仅有MFP-6。此前在厚壳贻贝足丝中鉴定到一种新型的富含半胱氨酸和甘氨酸的足丝蛋白质,该蛋白质被命名为Cys/Gly-Rich-Protein(CGRP),但是CGRP蛋白在足丝中的作用及机制尚不明确。为此,针对CGRP蛋白,在序列分析基础上,利用原核重组表达手段获得其重组蛋白质,采用2,2-联苯基-1-苦基肼基(2,2-diphenyl-1-picryl hydrazyl radical,DPPH)法检测CGRP重组蛋白经不同条件处理后的抗氧化活性。序列分析结果表明,CGRP蛋白含16.5%的半胱氨酸和10%的甘氨酸,其序列中含有两段半胱氨酸位置保守的重复序列,结构预测表明,其优势构象以无规卷曲为主。同源蛋白质搜索结果表明,CGRP蛋白在数据库中尚无高同源性蛋白质存在。通过密码子优化结合原核重组表达策略成功表达出CGRP重组蛋白,所获得的CGRP重组蛋白具有明显的抗氧化活性,且该活性在其半胱氨酸还原后显著增强(0.91±0.05 vs 0.71±0.11, P<0.01)而在半胱氨酸烷基化之后显著下降(0.08±0.03 vs 0.71±0.11, P<0.01),表明CGRP蛋白的抗氧化活性与其序列中半胱氨酸的自由巯基有关。本研究提示,CGRP蛋白是足丝中一种新的具有抗氧化功能的蛋白质,在足丝粘附过程中推测与MFP-6一起参与了富含多巴的足丝粘附蛋白的还原态维持,对贻贝足丝在固化和粘附过程中防止提前粘附具有重要意义。  相似文献   

18.
Wei Xu 《Biofouling》2013,29(3):157-161
Because of its aggressive growth and firm attachment to substrata, the zebra mussel (Dreissena polymorpha) has caused severe economic and ecological problems since its invasion into North America. The nature and details of attachment of this nuisance mollusc remains largely unexplored. Byssus, a special glandular apparatus located at the root of the foot of the mussel produces threads and plates through which firm attachment of the mollusc to underwater objects takes place. In an attempt to better understand the adhesion mechanism of the zebra mussel, the suppression subtractive hybridization (SSH) assay was employed to produce a cDNA library with genes unique to the foot of the mussel. Analysis of the SSH cDNA library revealed the presence of 750 new expressed sequence tags (ESTs) including 304 contigs and 446 singlets. Using BLAST search, 365 zebra mussel ESTs showed homology to other gene sequences with putative functions. The putative functions of the homologues included proteins involved in byssal thread formation in zebra and blue mussels, exocrine gland secretion, host defence, and house keeping. The generated data provide, for the first time, some useful insights into the foot structure of the zebra mussel and its underwater adhesion.  相似文献   

19.
Xu W  Faisal M 《Biofouling》2008,24(3):157-161
Because of its aggressive growth and firm attachment to substrata, the zebra mussel (Dreissena polymorpha) has caused severe economic and ecological problems since its invasion into North America. The nature and details of attachment of this nuisance mollusc remains largely unexplored. Byssus, a special glandular apparatus located at the root of the foot of the mussel produces threads and plates through which firm attachment of the mollusc to underwater objects takes place. In an attempt to better understand the adhesion mechanism of the zebra mussel, the suppression subtractive hybridization (SSH) assay was employed to produce a cDNA library with genes unique to the foot of the mussel. Analysis of the SSH cDNA library revealed the presence of 750 new expressed sequence tags (ESTs) including 304 contigs and 446 singlets. Using BLAST search, 365 zebra mussel ESTs showed homology to other gene sequences with putative functions. The putative functions of the homologues included proteins involved in byssal thread formation in zebra and blue mussels, exocrine gland secretion, host defence, and house keeping. The generated data provide, for the first time, some useful insights into the foot structure of the zebra mussel and its underwater adhesion.  相似文献   

20.
In 1961, 1971, 1976, 1979 and 1981 several cases of mussel poisoning have been recorded in the Netherlands. During the outbreak of this phenomenon, consumers of raw or cooked mussels, Mytilus edulis, obtained from the Dutch shellfish-growing areas, showed gastrointestinal disorders. Investigations revealed that phytoplankton bloom of the dinoflagellate Dinophysis acuminata Claparède & Lachman preceded the mussel poisoning. After the disappearance of these dinoflagellates, the toxicity of mussels was slowly diminishing and no longer detectable after a cleansing period of about 4 weeks at 14-15 degrees C. Toxicity of mussels could easily be detected by the rat bioassay. The chemical structure of the toxin, isolated in 1981 from toxic mussels from the Dutch Waddensea has been determined in Japan as a dinophysis-type toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号