首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manifestations of myocardial infarctions have been recognized as one of the major killers in the Western world. Therefore, advancing and developing novel cardiac tissue repair and replacement therapeutics have great implications to our health sciences and well-being. There are several approaches for forming cardiac tissues, non-jet-based and jet-based methodologies. A unique advantage of jet-based approaches is the possibility to handle living cells with a matrix for cell distribution and deposition in suspension, either as single or heterogeneous cell populations. Our previous studies on bio-electrospraying of cardiac cells have shown great promise. Here, we show for the first time the ability to bio-electrospray the three major cell types of the myocardium, both independently and simultaneously, for forming a fully functional cardiac tissue. Several samples are characterized in vitro and found to be indistinguishable in comparison to controls. Thus, we are describing a swiftly emerging novel biotechnique for direct cardiac tissue generation. Moreover, the present investigations pave the way for the development and optimization of a bio-patterning approach for the fabrication of biologically viable cardiac tissue grafts for the potential treatment of severe heart failure after myocardial infarction.  相似文献   

2.
The requirements for engineering clinically sized cardiac constructs include medium perfusion (to maintain cell viability throughout the construct volume) and the protection of cardiac myocytes from hydrodynamic shear. To reconcile these conflicting requirements, we proposed the use of porous elastomeric scaffolds with an array of channels providing conduits for medium perfusion, and sized to provide efficient transport of oxygen to the cells, by a combination of convective flow and molecular diffusion over short distances between the channels. In this study, we investigate the conditions for perfusion seeding of channeled constructs with myocytes and endothelial cells without the gel carrier we previously used to lock the cells within the scaffold pores. We first established the flow parameters for perfusion seeding of porous elastomer scaffolds using the C2C12 myoblast line, and determined that a linear perfusion velocity of 1.0 mm/s resulted in seeding efficiency of 87% ± 26% within 2 hours. When applied to seeding of channeled scaffolds with neonatal rat cardiac myocytes, these conditions also resulted in high efficiency (77.2% ± 23.7%) of cell seeding. Uniform spatial cell distributions were obtained when scaffolds were stacked on top of one another in perfusion cartridges, effectively closing off the channels during perfusion seeding. Perfusion seeding of single scaffolds resulted in preferential cell attachment at the channel surfaces, and was employed for seeding scaffolds with rat aortic endothelial cells. We thus propose that these techniques can be utilized to engineer thick and compact cardiac constructs with parallel channels lined with endothelial cells. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
4.
5.
The endothelium releases substances that affect both vascular and cardiac myocytes. However, under conditions of augmented metabolic demands and cardiac work, signals from the cardiac myocytes may be critical for the endothelium to fulfill its secretory and regulatory function in the vascular bed. Therefore, we hypothesized that cardiac myocytes produce substances that alter the resting membrane potential of endothelial cells and thus vascular tone. Isolated rat cardiac myocytes were electrically stimulated at the rate of 0 and 400 beats/min (Po2 = 150 mmHg), and supernatants were collected from each group (Sup-0; control) and (Sup-400) and used within 6 mo. These supernatants were applied to human coronary endothelial cells that were subsequently analyzed by using the whole cell and cell-attached patch-clamp modes. Sup-0 had no effect on the whole cell current and the zero-current potential. The Sup-0 from myocytes treated with aprotinin, an inhibitor of kallikrein and serine protease, reduced whole cell current between -120 and -60 mV. Sup-400 depolarized endothelial cells from the resting membrane potential of -45 to -5 mV (P < 0.05), increased the magnitude of an inward current, and activated an outward current. Moreover, Sup-400 cells assayed in cell-attached patches increased single channel amplitude and the probability of a channel being in the open state. These effects were reversed by the Sup-400 from aprotinin-treated cells. We conclude that under certain metabolic conditions, isolated cardiac myocytes produce and release vasoactive substances that alter the function of K+ channels in vascular endothelial cells. Thus cardiac myocytes seem to communicate metabolic information to the endothelium, which could potentially influence vascular tone.  相似文献   

6.
Fas is a widely expressed cell surface receptor that can initiate apoptosis when activated by its ligand (FasL). Whereas Fas abundance on cardiac myocytes increases in response to multiple pathological stimuli, direct evidence supporting its role in the pathogenesis of heart disease is lacking. Moreover, controversy exists even as to whether Fas activation induces apoptosis in cardiac myocytes. In this study, we show that adenoviral overexpression of FasL, but not beta-galactosidase, results in marked apoptosis both in cultures of primary neonatal cardiac myocytes and in the myocardium of intact adult rats. Myocyte killing by FasL is a specific event, because it does not occur in lpr (lymphoproliferative) mice that lack functional Fas. To assess the contribution of the Fas pathway to myocardial infarction (MI) in vivo, lpr mice were subjected to 30 min of ischemia followed by 24 h of reperfusion. Compared with wild-type mice, lpr mice exhibited infarcts that were 62.3% smaller with 63.8% less myocyte apoptosis. These data provide direct evidence that activation of Fas can induce apoptosis in cardiac myocytes and that Fas is a critical mediator of MI due to ischemia-reperfusion in vivo.  相似文献   

7.
Gap junctional proteins (connexins) form aqueous channels that enable direct cell-cell transfer of ions and small molecules. The distribution and conductance of gap junction channels in cardiac muscle determine the pattern and synchrony of cellular activation. However, the capacity for smooth muscle to restrict contractile events temporally and spatially suggests that cell-cell coupling or its regulation may be decidedly different in this tissue. We isolated a cDNA from vascular smooth muscle which encodes a connexin (Mr 43,187) structurally homologous to cardiac connexin43. Vascular smooth muscle connexin43 mRNA was expressed prominently in smooth muscle tissues, cultured vascular myocytes, and arterial endothelial cells. A model for functional expression of connexins was developed in two-cell B6D2 mouse embryos. Microinjection of in vitro transcribed vascular smooth muscle connexin43 mRNA was shown to be sufficient to induce intercellular coupling in previously uncoupled blastomeres. Through the construction of two deletion mutants of connexin43, we also show that the formation of cell-to-cell connections does not depend upon a predicted cytoplasmic region within 98 residues of the carboxyl terminus. Finally, the identification of connexin43 in smooth muscle and endothelial cells provides supporting evidence for the existence of heterocellular coupling between cells of the vascular intima.  相似文献   

8.
Apoptosis of cardiac myocytes has been implicated in cardiac dysfunction due to chronic hemodynamic overload. Reports on the role of apoptosis in the transition from hypertrophy to decompensated heart failure are not unequivocal. In this study we analysed the direct relationship between mechanical overload and induction of apoptosis in an in vitro model of cultured heart cells. Cyclic mechanical stretch was applied to cultured neonatal rat ventricular myocytes and fibroblasts. Several indicators of apoptosis were examined, such as morphological features, caspase-3 activity and DNA fragmentation. Mechanical strain did not induce any significant change in these parameters as compared to non-stretched myocytes or fibroblasts. However, administration of staurosporine, a known inducer of apoptosis, induced massive apoptosis in myocytes as well as fibroblasts. We conclude that this in vitro cell model system lacks a direct link between mechanical stretch and apoptosis. The three-dimensional structure-function relationship of myocardial tissue in the intact heart may elicit stretch-induced molecular signaling cascades in a much more complex way than in monolayer cultures of cardiac cells.  相似文献   

9.
The rhythmic heart beat is coordinated by electrical impulses transmitted from Purkinje fibers of the cardiac conduction system. During embryogenesis, the impulse-conducting cells differentiate from cardiac myocytes in direct association with the developing endocardium and coronary arteries, but not with the venous system. This conversion of myocytes into Purkinje fibers requires a paracrine interaction with blood vessels in vivo, and can be induced in vitro by exposing embryonic myocytes to endothelin-1 (ET-1), an endothelial cell-associated paracrine factor. These results suggest that an endothelial cell-derived signal is capable of inducing juxtaposed myocytes to differentiate into Purkinje fibers. It remains unexplained how Purkinje fiber recruitment is restricted to subendocardial and periarterial sites but not those juxtaposed to veins. Here we show that while the ET-receptor is expressed throughout the embryonic myocardium, introduction of the ET-1 precursor (preproET-1) in the embryonic myocardium is not sufficient to induce myocytes to differentiate into conducting cells. ET converting enzyme-1 (ECE-1), however, is expressed preferentially in endothelial cells of the endocardium and coronary arteries where Purkinje fiber recruitment takes place. Retroviral-mediated coexpression of both preproET-1 and ECE-1 in the embryonic myocardium induces myocytes to express Purkinje fiber markers ectopically and precociously. These results suggest that expression of ECE-1 plays a key role in defining an active site of ET signaling in the heart, thereby determining the timing and location of Purkinje fiber differentiation within the embryonic myocardium.  相似文献   

10.
Cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells are the major cellular constituents of the heart. The aim of this study was to observe alterations in myocardial cell populations during early neonatal development in the adult animal and to observe any variations of the cardiac cell populations in different species, specifically, the rat and mouse. Whole hearts were isolated from either mice or rats during the neonatal and adult stages of development, and single cell suspensions were prepared via sequential collagenase digestion. Heterogeneous cell populations were immunolabeled for specific cell types and analyzed using fluorescence-activated cell sorting (FACS). In addition, the left ventricle, right ventricle, and septa were isolated, fixed, and sectioned for morphometric analyses. These same cardiac regions were also analyzed using FACS. We observed that the adult murine myocardium is composed of approximately 56% myocytes, 27% fibroblasts, 7% endothelial cells, and 10% vascular smooth muscle cells. Moreover, our morphometric and FACS data demonstrated similar percentages in the three regions examined. During murine neonatal cardiac development, we observed a marked increase in numbers of cardiac fibroblasts and a resultant decrease in percentages of myocytes in late neonatal development (day 15). Finally, FACS analyses of the rat heart during development displayed similar results in relation to increases in cardiac fibroblasts during development; however, cell populations in the rat differed markedly from those observed in the mouse. Taken together, these data enabled us to establish a homeostatic model for the myocardium that can be compared with genetic and cardiac disease models.  相似文献   

11.

Background

Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division.

Principal Findings

The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation.

Conclusions

We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.  相似文献   

12.
The excessive generation of reactive oxygen metabolites (ROM) leads to an oxidative stress in the microvasculature of a variety of tissues and has been implicated as a causative event in a number of pathologies. There are numerous reviews on this topic that have been published recently. Herein, we will focus on a beneficial effect of ROM generation that leads to the development of an adaptive response that protects tissue from a subsequent oxidative stress (oxidant tolerance). We will focus on reductionist approaches (studies in isolated cells) used by our laboratory and those of others to define the mechanisms involved in this adaptational response and potential interactions between different cells within the tissue. As our prototype organ system, we target the heart, which has received the greatest amount of attention in this area. We will summarize evidence from isolated endothelial cells and cardiac myocytes that supports (i) the role of ROM in the development of oxidant tolerance, (ii) the possibility of an interaction between cardiac myocytes and endothelial cells in this phenomenon, and (iii) the potential interactions between ROMs and nitric oxide.  相似文献   

13.
Establishment of a human fetal cardiac myocyte cell line   总被引:4,自引:0,他引:4  
Summary Human cardiac myocytes undergo degeneration, cytolysis, and necrosis in a number of clinical disease conditions such as myocarditis, dilated cardiomyopathy, and during episodes of cardiac allograft rejection. The precise cellular, biochemical, and molecular mechanisms that lead to such abnormalities in myocytes have been difficult to investigate because at present it is not possible to obtain and maintain viable cell cultures of human adult cardiac myocytes in vitro. However, human fetal cardiac myocytes are relatively easy to maintain and culture in vitro, but their limited availability and growth, variability from one preparation to another, and varying degrees of contamination with endothelial and epithelial cell types have made it difficult to obtain reliable data on the effect of cardiotropic viruses and cardiotoxic drugs on such myocytes. These thoughts prompted us to attempt to derive a cell line of human cardiac origin. Highly enriched human fetal cardiac myocytes were transfected with the plasmids pSV2Neo and pRSVTAg and gave rise to a cell line (W1) which has been maintained in culture for 1 yr. Morphologic and phenotypic analyses of W1 cells by flow microfluorometry and immunoperoxidase techniques indicate that the W1 cell line shares many properties of human fetal cardiac myocytes, but appears not to react with specific antibodies known to react with markers unique to human endothelial, epithelial, skeletal muscle, and dendritic cells. These preliminary data suggest that the W1 cells may provide a unique source of an established cell line that shares many properties ascribed to human cardiac myocytes. This study was supported by grant 1RO1-25566-03 from the National Institutes of Health, Bethesda, MD, to A. Ahmed-Ansari and by a Grant-in-Aid from the American Heart Association, Georgia Affiliate, to Nicolas Neckelmann.  相似文献   

14.
15.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival.  相似文献   

16.
Summary Embryonic chick cardiac cell cultures, plated on collagen-coated dishes, containing serum-free synthetic media proliferate actively. The basic medium contained Ham's F12 nutrient mixture, fetuin, ascorbic acid, and bovine serum albumin. This medium was supplemented with various combinations of factors; endothelial cell growth supplement (ECGS), epidermal growth factor (EGF), insulin (I), transferrin (T), selenium (S), hydrocortisone, and thyroxine or supplemented alone. Basic medium supplemented with ECGS alone contributes to the highest final cell density among all other factors used in various combinations or alone. The final cell density of the control culture with 2% fetal bovine serum was higher than those of all experimental cultures and an additional control culture grown in the basic medium. Combinations of factors without ECGS do not promote significant cell proliferation. Thyroxine is required to induce optimal differentiation and contractility of cardiac myocytes in vitro. Fibronectin and laminin did not show any more influence than collagen did on the growth and maintenance of cardiac myocytes in serum-free media. The proportion of cardiac muscle cells in ECGS-containing media was higher than those in other experimental media and control media with the exception of ECGS and ITS-containing medium that showed lower proportion of cardiac myocytes than that of serum-containing medium on Days 3 and 5. The profiles of incorporation of [3H]thymidine into DNA of heart cells in experimental and control cultures showed a peak in incorporation values within the first week of culture and subsequently declined. Autoradiography studies revealed that cardiac myocytes in culture supplemented with ECGS alone attained a peak in labeling index on Day 1 with approximately 62% labeled cells. Subsequently, the labeling indices declined. Cardiac myocytes grown in media without ECGS showed significantly lower labeling indices than those in ECGS-containing media. This study has demonstrated the influence of ECGS, EGF and ITS in promoting the growth of cardiac myocytes and also in contributing to the maintenance of contractile cardiac myocytes in serum-free, long-term culture. The influence of ECGS on heart cell proliferation is considered to be superior to that of EGF and ITS. This study was supported in part by a grant HL-25482 from the National Heart Lung and Blood Institute and a grant from the American Heart Association of Michigan.  相似文献   

17.
18.
19.
Inflammation induced by wound healing or infection activates local vascular endothelial cells to mediate leukocyte rolling, adhesion, and extravasation by up-regulation of leukocyte adhesion molecules such as E-selectin and P-selectin. Obesity-associated adipose tissue inflammation has been suggested to cause insulin resistance, but weight loss and lipolysis also promote adipose tissue immune responses. While leukocyte-endothelial interactions are required for obesity-induced inflammation of adipose tissue, it is not known whether lipolysis-induced inflammation requires activation of endothelial cells. Here, we show that β3-adrenergic receptor stimulation by CL 316,243 promotes adipose tissue neutrophil infiltration in wild type and P-selectin-null mice but not in E-selectin-null mice. Increased expression of adipose tissue cytokines IL-1β, CCL2, and TNF-α in response to CL 316,243 administration is also dependent upon E-selectin but not P-selectin. In contrast, fasting increases adipose-resident macrophages but not neutrophils, and does not activate adipose-resident endothelium. Thus, two models of lipolysis-induced inflammation induce distinct immune cell populations within adipose tissue and exhibit distinct dependences on endothelial activation. Importantly, our results indicate that β3-adrenergic stimulation acts through up-regulation of E-selectin in adipose tissue endothelial cells to induce neutrophil infiltration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号