首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although archaeal genomes encode proteins similar to eukaryotic replication factors, the hyperthermophilic archaeon Pyrococcus abyssi replicates its circular chromosome at a high rate from a single origin (oriC) as in Bacteria. In further elucidating the mechanism of archaeal DNA replication, we have studied the elongation step of DNA replication in vivo. We have detected, in two main archaeal phyla, short RNA-primed replication intermediates whose structure and length are very similar to those of eukaryotic Okazaki fragments. Mapping of replication initiation points further showed that discontinuous DNA replication in P. abyssi starts at a well-defined site within the oriC recently identified in this hyperthermophile. Short Okazaki fragments and a high replication speed imply a very efficient turnover of Okazaki fragments in Archaea. Archaea therefore have a unique replication system showing mechanistic similarities to both Bacteria and Eukarya.  相似文献   

2.
Most of the core components of the archaeal chromosomal DNA replication apparatus share significant protein sequence similarity with eukaryotic replication factors, making the Archaea an excellent model system for understanding the biology of chromosome replication in eukaryotes. The present review summarizes current knowledge of how the core components of the archaeal chromosome replication apparatus interact with one another to perform their essential functions.  相似文献   

3.
Pyrococcus furiosus, a hyperthermophilic Archaea, has homologs of the eukaryotic MCM (mini-chromosome maintenance) helicase and GINS complex. The MCM and GINS proteins are both essential factors to initiate DNA replication in eukaryotic cells. Many biochemical characterizations of the replication-related proteins have been reported, but it has not been proved that the homologs of each protein are also essential for replication in archaeal cells. Here, we demonstrated that the P. furiosus GINS complex interacts with P. furiosus MCM. A chromatin immunoprecipitation assay revealed that the GINS complex is detected preferentially at the oriC region on Pyrococcus chromosomal DNA during the exponential growth phase but not in the stationary phase. Furthermore, the GINS complex stimulates both the ATPase and DNA helicase activities of MCM in vitro. These results strongly suggest that the archaeal GINS is involved in both the initiation and elongation processes of DNA replication in P. furiosus, as observed in eukaryotic cells.  相似文献   

4.
Primases synthesize the RNA primers that are necessary for replication of the parental DNA strands. Here we report that the heterodimeric archaeal/eukaryotic primase is an iron-sulfur (Fe-S) protein. Binding of the Fe-S cluster is mediated by an evolutionarily conserved domain at the C terminus of the large subunit. We further show that the Fe-S domain is essential to the unique ability of the eukaryotic primase to start DNA replication.  相似文献   

5.
Eukaryotes and archaea both possess multiple genes coding for family B DNA polymerases. In animals and fungi, three family B DNA polymerases, alpha, delta, and epsilon, are responsible for replication of nuclear DNA. We used a PCR-based approach to amplify and sequence phylogenetically conserved regions of these three DNA polymerases from Giardia intestinalis and Trichomonas vaginalis, representatives of early-diverging eukaryotic lineages. Phylogenetic analysis of eukaryotic and archaeal paralogs suggests that the gene duplications that gave rise to the three replicative paralogs occurred before the divergence of the earliest eukaryotic lineages, and that all eukaryotes are likely to possess these paralogs. One eukaryotic paralog, epsilon, consistently branches within archaeal sequences to the exclusion of other eukaryotic paralogs, suggesting that an epsilon-like family B DNA polymerase was ancestral to both archaea and eukaryotes. Because crenarchaeote and euryarchaeote paralogs do not form monophyletic groups in phylogenetic analysis, it is possible that archaeal family B paralogs themselves evolved by a series of gene duplications independent of the gene duplications that gave rise to eukaryotic paralogs.   相似文献   

6.
The archaeal replication apparatus appears to be a simplified version of the eukaryotic one with fewer polypeptides and simpler protein complexes. Herein, we report evidence that a Cdc6-like factor from the hyperthermophilic crenarchaea Sulfolobus solfataricus stimulates binding of the homohexameric MCM-like complex to bubble- and fork-containing DNA oligonucleotides that mimic early replication intermediates. This function does not require the Cdc6 ATP and DNA binding activities. These findings may provide important clues to understanding how the DNA replication initiation process has evolved in the more complex eukaryotic organisms.  相似文献   

7.
DNA primases are essential for the initiation of DNA replication and progression of the replication fork. Recent phylogenetic analyses coupled with biochemical and structural studies have revealed that the arrangement of catalytic residues within the archaeal and eukaryotic primase has significant similarity to those of the Pol X family of DNA-repair polymerases. Furthermore, two additional groups of enzymes, the ligase/primase of the bacterial nonhomologous end-joining machinery and a putative replicase from an archaeal plasmid have shown striking functional and structural similarities to the core primase. The promiscuous nature of the archaeal primases suggests that these proteins might have additional roles in DNA repair in the archaea.  相似文献   

8.
Genome replication generally requires primases, which synthesize an initial oligonucleotide primer, and DNA polymerases, which elongate the primer. Primase and DNA polymerase activities are combined, however, in newly identified replicases from archaeal plasmids, such as pRN1 from Sulfolobus islandicus. Here we present a structure-function analysis of the pRN1 primase-polymerase (prim-pol) domain. The crystal structure shows a central depression lined by conserved residues. Mutations on one side of the depression reduce DNA affinity. On the opposite side of the depression cluster three acidic residues and a histidine, which are required for primase and DNA polymerase activity. One acidic residue binds a manganese ion, suggestive of a metal-dependent catalytic mechanism. The structure does not show any similarity to DNA polymerases, but is distantly related to archaeal and eukaryotic primases, with corresponding active-site residues. We propose that archaeal and eukaryotic primases and the prim-pol domain have a common evolutionary ancestor, a bifunctional replicase for small DNA genomes.  相似文献   

9.
In eukaryotic DNA replication, replication factor-C (RFC) acts as the clamp loader, which correctly installs the sliding clamp onto DNA strands at replication forks. The eukaryotic RFC is a complex consisting of one large and four small subunits. We have determined the crystal structure of the clamp loader small subunit (RFCS) from Pyrococcus furiosus. The six subunits, of which four bind ADP in their canonical nucleotide binding clefts, assemble into a dimer of semicircular trimers. The crescent-like architecture of each subunit formed by the three domains resembles that of the delta' subunit of the E. coli clamp loader. The trimeric architecture of archaeal RFCS, with its mobile N-terminal domains, involves intersubunit interactions that may be conserved in eukaryotic functional complexes.  相似文献   

10.
Leon RP  Tecklenburg M  Sclafani RA 《Genetics》2008,179(4):1757-1768
Mcm proteins are an important family of evolutionarily conserved helicases required for DNA replication in eukaryotes. The eukaryotic Mcm complex consists of six paralogs that form a heterohexameric ring. Because the intact Mcm2-7 hexamer is inactive in vitro, it has been difficult to determine the precise function of the different subunits. The solved atomic structure of an archaeal minichromosome maintenance (MCM) homolog provides insight into the function of eukaryotic Mcm proteins. The N-terminal positively charged central channel in the archaeal molecule consists of beta-hairpin domains essential for DNA binding in vitro. Eukaryotic Mcm proteins also have beta-hairpin domains, but their function is unknown. With the archaeal atomic structure as a guide, yeast molecular genetics was used to query the function of the beta-hairpin domains in vivo. A yeast mcm5 mutant with beta-hairpin mutations displays defects in the G1/S transition of the cell cycle, the initiation phase of DNA replication, and in the binding of the entire Mcm2-7 complex to replication origins. A similar mcm4 mutation is synthetically lethal with the mcm5 mutation. Therefore, in addition to its known regulatory role, Mcm5 protein has a positive role in origin binding, which requires coordination by all six Mcm2-7 subunits in the hexamer.  相似文献   

11.
The origin recognition complex, Cdc6 and the minichromosome maintenance (MCM) complex play essential roles in the initiation of eukaryotic DNA replication. Homologs of these proteins may play similar roles in archaeal replication initiation. While the interactions among the eukaryotic initiation proteins are well documented, the protein–protein interactions between the archaeal proteins have not yet been determined. Here, an extensive structural and functional analysis of the interactions between the Methanothermobacter thermautotrophicus MCM and the two Cdc6 proteins (Cdc6-1 and -2) identified in the organism is described. The main contact between Cdc6 and MCM occurs via the N-terminal portion of the MCM protein. It was found that Cdc6–MCM interaction, but not Cdc6–DNA binding, plays the predominant role in regulating MCM helicase activity. In addition, the data showed that the interactions with MCM modulate the autophosphorylation of Cdc6-1 and -2. The results also suggest that MCM and DNA may compete for Cdc6-1 protein binding. The implications of these observations for the initiation of archaeal DNA replication are discussed.  相似文献   

12.
Primases are essential components of the DNA replication apparatus in every organism. They catalyze the synthesis of oligoribonucleotides on single-stranded DNA, which subsequently serve as primers for the replicative DNA polymerases. In contrast to bacterial primases, the archaeal enzymes are closely related to their eukaryotic counterparts. We have solved the crystal structure of the catalytic primase subunit from the hyperthermophilic archaeon Pyrococcus furiosus at 2.3 A resolution by multiwavelength anomalous dispersion methods. The structure shows a two-domain arrangement with a novel zinc knuckle motif located in the primase (prim) domain. In this first structure of a complete protein of the archaeal/eukaryotic primase family, the arrangement of the catalytically active residues resembles the active sites of various DNA polymerases that are unrelated in fold.  相似文献   

13.
In eukaryotes, the GINS complex is essential for DNA replication and has been implicated as having a role at the replication fork. This complex consists of four paralogous GINS subunits, Psf1, Psf2, Psf3 and Sld5. Here, we identify an archaeal GINS homologue as a direct interaction partner of the MCM helicase. The core archaeal GINS complex contains two subunits that are poorly conserved homologues of the eukaryotic GINS subunits, in complex with a protein containing a domain homologous to the DNA-binding domain of bacterial RecJ. Interaction studies show that archaeal GINS interacts directly with the heterodimeric core primase. Our data suggest that GINS is important in coordinating the architecture of the replication fork and provide a mechanism to couple progression of the MCM helicase on the leading strand with priming events on the lagging strand.  相似文献   

14.
Summary: The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.  相似文献   

15.
Clamp loaders orchestrate the switch from distributive to processive DNA synthesis. Their importance in cellular processes is underscored by their conservation across all forms of life. Here, we describe a new form of clamp loader from the archaeon Methanosarcina acetivorans. Unlike previously described archaeal clamp loaders, which are composed of one small subunit and one large subunit, the M. acetivorans clamp loader comprises two similar small subunits (M. acetivorans replication factor C small subunit (MacRFCS)) and one large subunit (MacRFCL). The relatedness of the archaeal and eukaryotic clamp loaders (which are made up of four similar small subunits and one large subunit) suggests that the M. acetivorans clamp loader may be an intermediate form in the archaeal/eukaryotic sister lineages. The clamp loader complex reconstituted from the three subunits MacRFCS1, MacRFCS2, and MacRFCL stimulated DNA synthesis by a cognate DNA polymerase in the presence of its sliding clamp. We used site-directed mutagenesis in the Walker A and SRC motifs to examine the contribution of each subunit to the function of the M. acetivorans clamp loader. Although mutations in MacRFCL and MacRFCS2 did not impair clamp loading activity, any mutant clamp loader harboring a mutation in MacRFCS1 was devoid of the clamp loading property. Mac-RFCS1 is therefore critical to the clamp loading activity of the M. acetivorans clamp loader. It is our anticipation that the discovery of this unique replication factor C homolog will lead to critical insights into the evolution of more complex clamp loaders from simpler ones as more complex organisms evolved in the archaeal/eukaryotic sister lineages.  相似文献   

16.
Archaea and the cell cycle   总被引:9,自引:4,他引:5  
Sequence similarity data suggest that archaeal chromosome replication is eukaryotic in character. Putative nucleoid-processing proteins display similarities to both eukaryotic and bacterial counterparts, whereas cell division may occur through a predominantly bacterial mechanism. Insights into the organization of the archaeal cell cycle are therefore of interest, not only for understanding archaeal biology, but also for investigating how components from the other two domains interact and work in concert within the same cell; in addition, archaea may have the potential to provide insights into eukaryotic initiation of chromosome replication.  相似文献   

17.
GINS is an essential eukaryotic DNA replication factor that is found in a simplified form in Archaea. A new study in this issue of BMC Biology reveals the first structure of the archaeal GINS complex. The structure reveals the anticipated similarity to the previously determined eukaryotic complex but also has some intriguing differences in the relative disposition of subunit domains.  相似文献   

18.
The discovery of multiple chromosome replication origins in Sulfolobus species has added yet another eukaryotic trait to the archaea, and brought new levels of complexity to the cell cycle in terms of initiation of chromosome replication, replication termination and chromosome decatenation. Conserved repeated DNA elements--origin recognition boxes--have been identified in the origins of replication, and shown to bind the Orc1/Cdc6 proteins involved in cell cycle control. The origin recognition boxes aid in the identification and characterization of new origins, and their conservation suggests that most archaea have a similar replication initiation mechanism. Cell-cycle-dependent variation in Orc1/Cdc6 levels has been demonstrated, reminiscent of variations in cyclin levels during the eukaryotic cell cycle. Information about archaeal chromosome segregation is also accumulating, including the identification of a protein that binds to short regularly spaced repeats that might constitute centromere-like elements. In addition, studies of cell-cycle-specific gene expression have potential to reveal, in the near future, missing components in crenarchaeal chromosome replication, genome segregation and cell division. Together with an increased number of physiological and cytological investigations of the overall organization of the cell cycle, rapid progress of the archaeal cell cycle field is evident, and archaea, in particular Sulfolobus species, are emerging as simple and powerful models for the eukaryotic cell cycle.  相似文献   

19.
20.
The eukaryotic MCM2-7 complex is recruited at origins of replication during the G1 phase and acts as the main helicase at the replication fork during the S phase of the cell cycle. To characterize the interplay between the MCM helicase and DNA prior to the melting of the double helix, we determined the structure of an archaeal MCM orthologue bound to a 5.6-kb double-stranded DNA segment, using cryo-electron microscopy. DNA wraps around the N-terminal face of a single hexameric ring. This interaction requires a conformational change within the outer belt of the MCM N-terminal domain, exposing a previously unrecognized helix-turn-helix DNA-binding motif. Our findings provide novel insights into the role of the MCM complex during the initiation step of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号