首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Agarwal SK  Jothi R 《PloS one》2012,7(5):e37952
Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.  相似文献   

3.
Zhang Y  Liu Z  Medrzycki M  Cao K  Fan Y 《PloS one》2012,7(6):e38829
The evolutionarily conserved homeotic (Hox) genes are organized in clusters and expressed collinearly to specify body patterning during embryonic development. Chromatin reorganization and decompaction are intimately connected with Hox gene activation. Linker histone H1 plays a key role in facilitating folding of higher order chromatin structure. Previous studies have shown that deletion of three somatic H1 subtypes together leads to embryonic lethality and that H1c/H1d/H1e triple knockout (TKO) embryonic stem cells (ESCs) display bulk chromatin decompaction. To investigate the potential role of H1 and higher order chromatin folding in the regulation of Hox gene expression, we systematically analyzed the expression of all 39 Hox genes in triple H1 null mouse embryos and ESCs by quantitative RT-PCR. Surprisingly, we find that H1 depletion causes significant reduction in the expression of a broad range of Hox genes in embryos and ESCs. To examine if any of the three H1 subtypes (H1c, H1d and H1e) is responsible for decreased expression of Hox gene in triple-H1 null ESCs, we derived and characterized H1c(-/-), H1d(-/-), and H1e(-/-) single-H1 null ESCs. We show that deletion of individual H1 subtypes results in down-regulation of specific Hox genes in ESCs. Finally we demonstrate that, in triple-H1- and single-H1-null ESCs, the levels of H3K4 trimethylation (H3K4me3) and H3K27 trimethylation (H3K27me3) were affected at specific Hox genes with decreased expression. Our data demonstrate that marked reduction in total H1 levels causes significant reduction in both expression and the level of active histone mark H3K4me3 at many Hox genes and that individual H1 subtypes may also contribute to the regulation of specific Hox gene expression. We suggest possible mechanisms for such an unexpected role of histone H1 in Hox gene regulation.  相似文献   

4.
5.
Hox genes are organized as clusters and specify regional identity along the anteroposterior body axis by sequential expression at a specific time and region during embryogenesis. However, the precise mechanisms underlying the sequential spatio-temporal, collinear expression pattern of Hox genes are not fully understood. Since epigenetic modifications such as chromatin architecture and histone modifications have become crucial mechanisms for highly coordinated gene expressions, we examined such modifications. E14.5 mouse embryos were dissected into three parts along the anteroposterior axis: brain, trunk-anterior, and trunk-posterior. Then, structural changes and epigenetic modifications were analyzed along the Hoxc cluster using chromosome conformation capture and chromatin immunoprecipitation-PCR methods. Hox non-expressing brain tissues had more compact, heterochromatin-like structures together with the strong repressive mark H3K27me3 than trunk tissues. In the trunk, however, a more loose euchromatin-like topology with a reduced amount of H3K27me3 modifications were observed along the whole cluster, regardless of their potency in gene activation. The active mark H3K4me3 was rather closely associated with the collinear expression of Hoxc genes; at trunk-anterior tissues, only 3' anterior Hoxc genes were marked by H3K4me3 upon gene activation, whereas whole Hoxc genes were marked by H3K4me3 and showed expression in trunk-posterior tissues. Altogether, these results indicated that loosening of the chromatin architecture and removing H3K27me3 were not sufficient for, but rather the concomitant acquisition of H3K4me3 drove the collinear expression of Hoxc genes.  相似文献   

6.
Chromosomal translocations disrupting the Mixed lineage leukemia (Mll) gene result in leukemia, with aberrant expression of some native Mll target genes (reviewed in). The Mll gene encodes a Trithorax-group chromatin regulator that is essential for the development of hematopoietic stem cells (HSCs) during embryogenesis. Like Trithorax, MLL positively regulates clustered homeodomain or Hox genes, yet the role of Hox genes collectively in the development of the mammalian hematopoietic system has been difficult to ascertain because of redundancy among Hox paralogs. Here, we show that in the absence of MLL, early hematopoietic progenitors develop despite reduced expression of HoxA, HoxB, and HoxC genes. However, these progenitors exhibit a marked reduction in their ability to generate hematopoietic colonies, a subsequent process requiring cell division and differentiation. Reactivation of a subset of Hox genes or, remarkably, reexpression of a single Hox gene in Mll-deficient progenitors rescued hematopoietic-colony frequency and growth. In contrast, expression of other MLL target genes such as Pitx2 or expression of anti-apoptotic BCL-2 failed to rescue hematopoietic-colony frequency. Furthermore, our results highlight a shared function of Hox proteins at this point in the development of the hematopoietic system.  相似文献   

7.
Hox gene expression is activated by all-trans retinoic acid (RA), through binding to retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimers bound at RA response elements (RAREs) of target genes. The RARs and RXRs each have three isotypes (alpha, beta, and gamma), which are encoded by distinct genes. Hox genes are also repressed by polycomb group proteins (PcG), though how these proteins are targeted is unclear. We used chromatin immunoprecipitation assays to investigate the association of RXRalpha, RARgamma, cofactors, and the PcG protein SUZ12 with the Hoxa1, RARbeta2, and Cyp26A1 RAREs in F9 embryonal carcinoma cells (teratocarcinoma stem cells) during RA treatment. We demonstrate that RARgamma and RXRalpha are associated with RAREs prior to and during RA treatment. pCIP, p300, and RNA polymerase II levels increased at target RAREs upon exposure to RA. Conversely, SUZ12 was found associated with all RAREs studied and these associations were attenuated by treatment with RA. Upon RA removal, SUZ12 re-associated with RAREs. H3ac, H3K4me2, and H3K27me3 marks were simultaneously detected at target loci, indicative of a bivalent domain chromatin structure. During RA mediated differentiation, H3K27me3 levels decreased at target RAREs whereas H3ac and H3K4me2 levels remained constant. These studies provide insight into the dynamics of association of co-regulators with RAREs and demonstrate a novel link between RA signaling and PcG repression.  相似文献   

8.
9.
10.
11.
12.
Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.  相似文献   

13.
Recent studies have demonstrated that histone methylation can be dynamically regulated through active demethylation. However, no demethylase specific to histone H3 trimethyl-Lys4 (H3K4me3) has been identified. Here we report that the Drosophila melanogaster protein 'little imaginal discs' (Lid), a JmjC domain-containing trithorax group protein, can demethylate H3K4me3. Consistent with its genetic classification, Lid positively regulates Hox gene expression in S2 cells.  相似文献   

14.
Position-specific activity of the Hox1.1 promoter in transgenic mice   总被引:9,自引:0,他引:9  
During development, positional values have to be assigned to groups of cells. The murine Hox genes are a class of genes that are predicted to be involved at some stage in this process. During embryogenesis they are expressed in distinct overlapping region- and stage-specific patterns and therefore must be regulated in response to positional information. In this study, we have analysed the activity of Hox1.1 promoter sequences in transgenic mice. The use of lacZ as a marker allows a detailed analysis of expression at the single cell level during early embryonic development. We show that 3.6 kbp of promoter and 1.7 kbp of 3' sequences provide sufficient regulatory information to express a transgene in a spatial and temporal manner indistinguishable from the endogenous Hox1.1 gene during the period of development when Hox1.1 expression is established. The activation occurs in a strict order in specific ectodermal and mesodermal domains. Within each of these domains the transgene is activated over a period of four hours apparently randomly in single cells. In a following second period, Hox1.1 and transgene expression patterns diverge. In this period, transgene expression persists in many mesodermally derived cells that do not express Hox1.1 indicating the absence of a negative regulatory element in the transgene. The anterior boundary of transgene expression is identical to that of Hox1.1. However, no posterior boundary of transgene expression is set, suggesting that a separate element absent from the transgene specifies this boundary.  相似文献   

15.
16.
17.
18.
19.
Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation (H3K27me3), an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, making it difficult to determine the precise roles of PRC2 during lineage commitment. Moreover, while studies suggest that PRC2 prevents DNA methylation, how these two epigenetic regulators coordinate to regulate lineage programs is poorly understood. Using several PRC2 mutant ESC lines that maintain varying levels of H3K27me3, we found that partial maintenance of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). In contrast, genes that function to specify other lineages failed to be repressed in these cells, suggesting that PRC2 is also necessary for lineage fidelity. We also found that loss of H3K27me3 leads to a modest gain in DNA methylation at PRC2 target regions in both ESCs and in SMNs. Our study demonstrates a critical role for PRC2 in safeguarding lineage decisions and in protecting genes against inappropriate DNA methylation.  相似文献   

20.
Studies implicate an important role for the mixed lineage leukemia (Mll) gene in hematopoiesis, mainly through maintaining Hox gene expression. However, the mechanisms underlying Mll-mediated hematopoiesis during embryogenesis remain largely unclear. Here, we investigate the role of mll during zebrafish embryogenesis, particularly hematopoiesis. Mll depletion caused severe defects in hematopoiesis as indicated by a lack of blood flow and mature blood cells as well as a significant reduction in expression of hematopoietic progenitor and mature blood cell markers. Furthermore, mll depletion prevented the differentiation of hematopoietic progenitors. In addition, we identified the N-terminal mini-peptide of Mll that acted as a dominant negative form to disrupt normal function of mll during embryogenesis. As expected, mll knockdown altered the expression of a subset of Hox genes. However, overexpression of these down-regulated Hox genes only partially rescued the blood deficiency, suggesting that mll may target additional genes to regulate hematopoiesis. In the mll morphants, microarray analysis revealed a dramatic up-regulation of gadd45αa. Multiple assays indicate that mll inhibited gadd45αa expression and that overexpression of gadd45αa mRNA led to a phenotype similar to the one seen in the mll morphants. Taken together, these findings demonstrate that zebrafish mll plays essential roles in hematopoiesis and that gadd45αa may serve as a potential downstream target for mediating the function of mll in hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号