首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探讨扬子鳄卵巢内不同性类固醇激素受体在卵泡发育中的调控作用,研究采用组织学和免疫细胞化学方法,运用激光共聚焦显微镜,对扬子鳄不同发育时期卵泡中的雌激素受体、雄激素受体和孕激素受体进行了检测。结果发现,3种类固醇激素受体在卵巢各期滤泡细胞中均有表达,在4月Ⅱ-Ⅳ期卵泡的滤泡细胞中阳性反应最强;9月卵巢的滤泡细胞中阳性反应最弱;ER和AR不仅在各期滤泡细胞中存在阳性位点,在6月卵泡的卵母细胞胞质中也有表达。结果说明,在扬子鳄卵母细胞生长发育和成熟过程中,3种激素受体通过与其对应的激素结合对滤泡细胞的发育、卵黄的合成与积累以及排卵起着重要的调控作用。    相似文献   

2.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

3.
The aim of this study was to investigate the presence and localization of gonadotropin-releasing hormone receptor-I (GnRHRI), gonadotropin receptors (FSHR, LHR), progesterone receptor (PGR), and progesterone receptor membrane-binding component-I (PGRMCI) in the different developmental stages of the rabbit follicle. The ovaries were collected from four healthy New Zealand white rabbits, and the mRNA expression and protein levels of GnRHRI, FSHR, LHR, PGR, and PGRMCI were examined with real-time PCR and immunohistochemistry. The results showed that GnRHRI, FSHR, LHR, PGR, and PGRMCI mRNA was expressed in the ovary; furthermore, we show cell-type specific and follicular development stage-specific expression of these receptors at the protein level. Specifically, all of the receptors were detected in the oocytes from the primordial to the tertiary follicles and in the granulosa and theca cells from the secondary and tertiary follicles. In the mature follicles, all receptors were primarily localized in the granulosa and theca cells. In addition, LHR was also localized in the granulosa cells from the primordial and primary follicles. With follicular development, the expression level of all of the receptors, except GnRHRI, in the follicles showed a tendency to decrease because the area of the follicle increased sharply. The expression level of GnRHRI, FSHR, and PGR in the granulosa and theca cells showed an increasing trend with ongoing follicular development. Interestingly, the expression level of FSHR in the oocytes obviously decreased from the primary to the tertiary follicles, whereas LHR in the oocytes increased from the secondary to tertiary follicles. In conclusion, the expression of GnRHRI, the gonadotropin receptors, PGR, and PGRMCI decreased from the preantral follicles (primordial, primary, and secondary follicles) to the tertiary follicles. The expression of GnRHRI and LHR in the oocytes increased from the secondary to the tertiary follicles, whereas FSHR decreased from the primary to the tertiary follicles. The expression of GnRHRI and PGR in the granulosa and theca cells increased from the secondary to the mature follicles. These observations suggest that these receptors play roles in follicular development and participate in the regulation of follicular development.  相似文献   

4.
In the mammalian ovary, the microvasculature in the thecal layer of follicles is associated with follicular development. Apelin and its receptor, APJ, are expressed in the tissues and organs which include the vasculature. The aims of the present study were to examine the mRNA expression of apelin and the APJ receptor in granulosa cells and theca tissue of bovine follicles and the effects of steroid hormone and gonadotrophins on the expression of these genes in cultured granulosa cells and theca cells. The expression of apelin mRNA was not found in the granulosa cells of bovine follicles. The expression of the APJ gene was increased in granulosa cells of estrogen-inactive dominant follicles. The expression of apelin mRNA increased in theca tissues of estrogen-inactive dominant follicles. APJ expression in theca tissues increased with follicle growth. Progesterone stimulated the expression of APJ mRNA in the cultured granulosa cells. FSH stimulated the expression of APJ mRNA in the cultured granulosa cells. LH induced the expression of apelin and APJ receptor mRNAs in cultured theca cells. Taken together, our data indicate that the APJ receptor in granulosa cells and both apelin and the APJ receptor in theca tissues are expressed in bovine ovary, that APJ in granulosa cells may be involved in the appearance of the cell apoptosis, and that LH stimulates the expression of apelin and APJ genes in theca cells.  相似文献   

5.
6.
Ovaries were collected from naturally cycling gilts during the preovulatory period and the stage relative to the LH surge estimated by measurement of oestradiol and progesterone concentrations in follicular fluid. Many of the follicles recovered had become flaccid with an associated increase in follicular fluid viscosity. Marked infolding of both the granulosa and theca tissue in some follicles suggested early luteinization. However, these morphological changes did not necessarily occur simultaneously in the same follicle, or in all follicles within an ovary. Moreover, they were not consistently related to characteristic differences in the concentration of follicular fluid steroids, suggesting either that the morphological and biochemical aspects of the luteinization of follicles may be independently controlled, or may respond at different rates to the same signal.  相似文献   

7.
Estrogens play an important role in the growth, differentiation, and function of female reproductive tissues. Estrogen signals through estrogen receptors (ERs), members of the nuclear receptor superfamily. The two major forms, ERalpha and ERbeta, are expressed in the mouse ovary, where ERbeta is predominantly expressed in granulosa cells, and ERalpha in theca cells. In this study, we determined the expression pattern of ER subtypes within mouse follicles cultured from the early preantral stage up to the preovulatory stage and after an ovulatory stimulus in different culture conditions. Immunohistochemical studies performed at different time points of culture revealed that ERbeta was found exclusively in granulosa cell nuclei regardless of follicular growth stage or culture conditions. In contrast, ERalpha was found in oocyte, granulose, and theca cells, and its subcellular localization differed between follicular growth stages and culture conditions. A shift from a predominant cytoplasmic to a predominant nuclear immunolocalization was observed in granulosa cells as follicles reached the antral growth phase, and was postponed in culture conditions with minimal growth factor supplementation. In response to hCG, ERbeta protein levels in luteinized granulosa cells spectacularly declined to undetectable levels, while ERalpha immunostaining again shifted to cytoplasmic regions, but not in theca cells.  相似文献   

8.
Determination of the specific roles of the estrogen receptor (ER) forms in reproductive processes of different species remains incomplete. In the present experiment, cellular localization and changes in relative amounts of the ERα and ERβ in late developing ovarian follicles, oviduct, and uterus were determined during the follicular phase of the estrous cycle in sheep. Ewes in mid-luteal phase were treated with prostaglandin F(2α) (PG) to induce luteolysis and control the onset of the follicular phase. The oviducts, uterus, and the ovaries were collected at 0 (ewes not treated with PG), 4, 18, and 36 h after PG treatment (early, mid, and late follicular phase, respectively) and processed to evaluate the ERs using immunohistochemical (IHC) procedures. The ERα was localized to nuclei of granulosa cells of late developing follicles and most cells of the oviduct and uterus. The ERβ was detected only in ovarian follicles using two antibodies directed to different regions of the ERβ. Western immunoblotting demonstrated that the antibody directed against the N-terminal region of the ERβ detected one isoform (approximately 53 kDa) whereas the antibody directed against the C-terminus detected two ERβ isoforms (approximately 53 kDa and 59 kDa). Western and IHC results combined indicated presence of the 59 kDa ERβ in granulosa cells and the 53 kDa ERβ in both granulosa and theca cells. Relative amounts (immunostaining intensity) of the ERα increased (P<.05) in granulosa cells of preovulatory follicles and in the isthmian muscularis of the oviduct at the late follicular phase. Amounts of the ERα in the mucosal epithelium of the oviductal regions (isthmus, ampulla, and infundibulum), and in various uterine cell types (glandular and luminal epithelia, endometrial stromal cells, and myometrium) did not change (P>.05) throughout the follicular phase. A major increase (four-fold) in expression of the 53 kDa ERβ in the theca and a less pronounced increase in the granulosa occurred at the late follicular phase. The ERα is broadly expressed in reproductive organs of sheep and is upregulated only in few cell types during the late follicular phase. Immunoreactive ERβ was detected only in the ovary. Important estrogen actions in theca cells during preovulatory follicular development likely occur in association with a major increase in expression of an ERβ isoform.  相似文献   

9.
Yang X  Zhao L  Zhao Z  Hu B  Wang C  Yang Z  Cheng Y 《Tissue & cell》2012,44(2):95-100
Estrogen induces oocytes development and vitellogenesis in crustacean by interacting with estrogen receptor (ER) subtypes. In the present study, we detect for the first time the ERα in oocytes and follicle cells and hepatopancreas cells of mysis by immunohistochemistry using a specific ERα antibody. ERα was mainly localized in the nuclei of oocytes and follicle cells, while mainly detected in nuclei of oogonia (OG), previtellogenic oocyte (PR) and endogenous vitellogenic oocyte (EN) at previtellogenic and early vitellogenic stage (I-early III). Follicle cells in all stages of ovary (all vitellogenic stages) showed strong ERα positive reaction, and they were able to gradually move to oocytes during the development of oocytes. In addition, ERα was also localized in the nuclei and cytoplasm of four hepatopancreas cells (including E-, R-, F- and B-cell) in all ovary stages. These findings suggest, for the first time to our knowledge, that there could be a close link between oogenesis, follicle cells, hepatopancreas cells and endocrine regulation, and estrogens might be involved in the regulation of oocytes at early ovarian stage in mysis.  相似文献   

10.
11.
It has been suggested that locally produced insulin-like growth factor binding protein 4 (IGFBP4) inhibits ovarian follicular growth and ovulation by interfering with IGF action. According to this hypothesis, IGFBP4-expressing follicles should demonstrate atresia, whereas healthy dominant follicles should be devoid of IGFBP4. Alternatively, according to this view, there could be constitutive expression of the inhibitory IGFBP4 but selective expression of an IGFBP4 protease in dominant follicles, allowing the follicle to mature and ovulate because of degradation of the binding protein. To examine these views concerning the role of IGFBP4 in primate follicular selection, we analyzed cellular patterns of IGFs 1 and 2, IGFBP4, and the IGFBP4 protease (pregnancy-associated plasma protein A [PAPP-A]) mRNA expression in ovaries from late follicular phase rhesus monkeys using in situ hybridization. The IGF1 mRNA was not detected, but the IGF2 mRNA was abundant in theca interna and externa of all antral follicles and was present in the granulosa of large preovulatory and ovulatory follicles. The IGFBP4 mRNA was selectively expressed by LH receptor (LHR) mRNA-positive theca interna cells of healthy antral follicles (defined by aromatase and gonadotropin receptor expression) and by LHR-expressing granulosa cells found only in large preovulatory and ovulatory follicles (defined by size and aromatase expression). The PAPP-A mRNA was abundant in granulosa cells of most follicles without obvious relation to IGFBP4 expression. Ovarian IGFBP4 mRNA levels were markedly increased after treatment with the LH analog, hCG, whereas IGF2 and PAPP-A mRNAs were not significantly altered. In summary, IGFBP4 expression appears to be associated with follicular selection, not with atresia, in the monkey ovary. The IGFBP4 is consistently expressed in healthy theca interna and in luteinized granulosa cells, likely under LH regulation. The IGFBP4 protease, PAPP-A, is widely expressed without apparent selectivity for IGFBP4-expressing follicles or for dominant follicles. These observations suggest that IGFBP4 or an IGFBP4 proteolytic product may be involved with LH-induced steroidogenesis and/or luteinization rather than with inhibition of follicular growth.  相似文献   

12.
Using immunohistochemistry and in situ hybridization, we attempted to identify the estrogen receptor (ER) protein and messenger RNA (mRNA) in sheep ovaries during the follicular phase of the estrous cycle. Monoclonal anti-ER antibodies H222 and 1D5 were used for localizing estrogen receptor on ovarian cryo-sections. Labeling for ER was found over the nuclei of surface epithelium, interstitial tissue, and granulosa cells of small as well as large ovarian follicles. In the preantral and small antral follicles, intense nuclear ER labeling was observed in mural granulosa cells and particularly in cumulus/granulosa cells surrounding the oocyte. In the large healthy looking follicles, greater diversity in labeling for ER was observed, which is characterized by mixed populations of granulosa cells expressing positive and more or less negative nuclear labeling. Such a pattern of labeling was particularly evident in follicles showing the signs of atresia. Generally, more intense nuclear staining was localized in granulosa cells proximal to basal membrane. In situ hybridization studies revealed the presence of ER mRNA in ovarian tissue. Autoradiographic visualization localized ER mRNA expression over the granulosa cells of healthy follicles of all sizes. Level of hybridization signal was comparable in mural and cumulus granulosa cells. In atretic follicles, the level of hybridization signal in granulosa cells was comparable to that of healthy follicles. A relatively weaker level of labeling was observed in granulosa cells dispersed in follicular antrum in follicles with advanced atretic lesions. Theca cells expressed a lower level of labeling than granulosa cells. Specificity of labeling for both ER protein and mRNA in ovary was proved by parallel probing the ovine uterus. Ovine ER recognition by both H222 and 1D5 antibodies was also proved by immunoblotting. These studies demonstrate the presence of the estrogen receptor and its messenger RNA in the sheep ovary and suggest an autocrine/paracrine role of estradiol and its receptor in the regulation of ovarian follicle development in sheep. Mol. Reprod. Dev. 48:53–62, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Betaglycan was originally characterized as the type III receptor for TGFbeta, yet recent research has indicated that betaglycan can serve as an accessory receptor for inhibin. To understand better the action of inhibin in avian follicular development, we have investigated the expression of betaglycan in the pituitary gland and ovary of the hen. In experiments 1 and 2, betaglycan mRNA was detected at 6 kilobases (kb) by Northern blot analysis (n = 5) in chicken pituitary, granulosa, and theca layers and whole ovary. Expression of betaglycan was greatest in the pituitary gland in experiment 1 and greater in the granulosa layer of small yellow follicles (SYF) compared with the granulosa layer of larger follicles. In experiment 2, betaglycan mRNA was more abundantly expressed in the theca layer compared with the granulosa layer for all follicle sizes, although there was no significant difference in betaglycan expression in the theca layer among follicle sizes. In experiment 3, immunohistochemical analysis revealed betaglycan protein in the anterior pituitary as well as in the ovary (n = 4) and SYF (n = 4). Colocalization studies revealed a high abundance of cells within the anterior pituitary expressing both betaglycan and FSH (n = 4). Betaglycan protein was found in the granulosa layer; however, markedly enhanced staining was observed in the theca layer of ovarian follicles. Our results provide evidence for expression of betaglycan mRNA and protein colocalization with FSH in the anterior pituitary, consistent with known inhibin effects. Ovarian localization of betaglycan, particularly in the theca layer, suggests a paracrine role for inhibin in the hen.  相似文献   

14.
The ovary of the brushtail possum (Trichosurus vulpecula) secretes steroids; however, little is known about the identity of the steroidogenic cells in the ovary. The aim of the present study was to determine the identity of the ovarian cell types expressing mRNAs encoding proteins important for steroidogenesis and determine at what stage of follicular development they are expressed. The genes examined were those for steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein (StAR), cytochrome p450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase/Delta5,Delta4 isomerase (3betaHSD), cytochrome p45017alphahydroxylase (p45017alphaOH), and p450 aromatase (p450arom). None of the genes examined were expressed in oocytes at any stage of follicular development. SF-1 was expressed in granulosa cells from the type 2 or the primary stage of development and thereafter to the preovulatory stage. In addition, the theca interna of small and medium-size antral but not preovulatory follicles and the interstitial glands and corpora lutea expressed SF-1 mRNA. Granulosa cells of preantral and small to medium-size antral follicles were not capable of synthesizing steroids from cholesterol because they did not contain p450scc mRNA. However, granulosa cells of many of the small to medium-size antral follicles expressed p450arom and 3betaHSD mRNA. The interstitial glands, theca interna, and corpus luteum expressed StAR, p450scc, 3betaHSD, and p45017alphaOH mRNA, suggesting that these tissues are capable of synthesizing progestins and androgens. The corpus luteum expressed p450arom, indicating that this tissue also has the potential to secrete estrogens in this species.  相似文献   

15.
IGF-Ⅰ及其受体、IGF结合蛋白-2和LH受体mRNA在卵泡中的表达   总被引:2,自引:0,他引:2  
罗文祥  祝诚  吴燕婉 《动物学报》1999,45(4):427-434
利用原位杂交和原位DNA-3’末端标记的方法研究了胰岛素样生长因子河(IG-I)、IGF-I受体、IGF结合蛋白-2、和促性腺激素受体的信使核糖核酸(mRNA)在不同生长与闭锁阶段的大鼠卵巢卵泡中表达的变化。结果表明:IGF-I主要在正常生长的初级卵泡、窦前卵泡和小窦状卵泡中表达。在各生长与成熟阶段的卵泡中都检测到IGF-I受体mRNA,闭锁卵泡的IGF-I受体表达降低。窦前与窦状的生长和闭锁卵泡均表达IGFBP-2。促卵泡激素(FSH)受体在窦前和小窦状卵泡的表达水平比其在大卵泡中的高。窦前与小窦状卵泡仅在膜细胞中表达黄体生成素(LH)受体mRNA,大卵泡的膜细胞与颗粒细胞均表达LH受体,在闭锁卵泡中仅在膜细胞中观察到LH受体的信号。综上结果,提示IGF-I,IGF-I受体和FSH受体在窦前和小窦状卵泡中的协同表达对卵泡的早期发育有重要作用。LH受体mRNA特异地在大卵泡的颗粒细胞中表达可能与优势卵泡选择相关。  相似文献   

16.
The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.  相似文献   

17.
Changes in ovarian histology during the reproductive cycle of the viviparous lizard Sceloporus torquatus torquatus are described. In general, the variation in follicular histology observed during the seasonal cycle is similar to that of other lizards. Sceloporus t. torquatus exhibits a cycle in which small, previtellogenic follicles exist in the ovary from December to August. Vitellogenesis occurs between September and November, followed by ovulation from late November to early December. Parturition occurs the following spring. After ovulation, the remaining follicular cells form the corpus luteum and luteolysis did not occur until April-May. Follicular atresia is commonly observed in previtellogenic follicles with polymorphic granulosa, but occurs less frequently in follicles during late vitellogenesis. There are two germinal beds in each ovary. The yolk nucleus is evident in young oocytes as is a vacuolated ooplasma prior to vitellogenesis. Extensive polymorphism is observed in yolk platelets. Mast cells and secretory cells are observed in the thecal layer of the follicular wall as are melanocytes in the ovarian stroma. © 1995 Wiley-Liss, Inc.  相似文献   

18.
In the present study, changes in the immunohistochemical localization of endometrial estrogen receptor (ER) and progesterone receptor (PR) during various stages of the ovarian cyclicity in common marmoset, have been reported. Ovarian cyclicity was monitored by estimating plasma estradiol and progesterone. During the early follicular phase, weak ER immunolocalization was observed in the endometrial stroma. During the late follicular phase under the influence of rising estradiol levels, stromal ER localization was intense. During the luteal phase, ER localization was absent in the stroma indicating that high concentrations of progesterone suppressed ER. PR localization was not observed in the stroma during the early follicular phase, while weak staining was seen in the stroma during the late follicular phase. PR localization was maximum during the mid luteal phase. However in marmoset, endometrial ER and PR localization was restricted only to the stroma. This unique feature may be due to the characteristic reproductive profile of this nonmenstruating species and needs to be studied further. Thus it can be hypothesized that in the marmoset endometrium, steroid hormone mediated effects possibly occur directly in the stroma and are then transmitted to the epithelium by autocrine/paracrine action of growth factors and cytokines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号