首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenetic mechanism of the deafness-associated mitochondrial DNA (mtDNA) T7445C mutation has been investigated in several lymphoblastoid cell lines from members of a New Zealand pedigree exhibiting the mutation in homoplasmic form and from control individuals. We show here that the mutation flanks the 3′ end of the tRNASer(UCN) gene sequence and affects the rate but not the sites of processing of the tRNA precursor. This causes an average reduction of ~70% in the tRNASer(UCN) level and a decrease of ~45% in protein synthesis rate in the cell lines analyzed. The data show a sharp threshold in the capacity of tRNASer(UCN) to support the wild-type protein synthesis rate, which corresponds to ~40% of the control level of this tRNA. Strikingly, a 7445 mutation-associated marked reduction has been observed in the level of the mRNA for the NADH dehydrogenase (complex I) ND6 subunit gene, which is located ~7 kbp upstream and is cotranscribed with the tRNASer(UCN) gene, with strong evidence pointing to a mechanistic link with the tRNA precursor processing defect. Such reduction significantly affects the rate of synthesis of the ND6 subunit and plays a determinant role in the deafness-associated respiratory phenotype of the mutant cell lines. In particular, it accounts for their specific, very significant decrease in glutamate- or malate-dependent O2 consumption. Furthermore, several homoplasmic mtDNA mutations affecting subunits of NADH dehydrogenase may play a synergistic role in the establishment of the respiratory phenotype of the mutant cells.  相似文献   

2.
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNASer(UCN) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.  相似文献   

3.
线粒体tRNA基因突变是导致感音神经性耳聋的原因之一.有些tRNA突变可直接造成耳聋的发生,称之为原发突变.如tRNALeu(UUR) A3243G等突变与综合征型耳聋相关,而tRNASer(UCN) T7511C等突变则与非综合征型耳聋相关.此外,继发突变如tRNAThr G15927A等突变则对原发突变起协同作用,影响耳聋的表型表达.这些突变可引起tRNA二级结构改变,从而影响线粒体蛋白质合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍可导致耳聋的发生.主要讨论与耳聋相关的线粒体tRNA突变及其致聋机理.  相似文献   

4.
Mutations in mitochondrial DNA have been associated with hypertension. We report here the clinical, genetic, and molecular characterization of one four-generation Han Chinese family with hypertension. Two matrilineal relatives in this family exhibited the variable degree of a secondary hypertension (renal hypertension) at the age-at-onset of 42 and 56 years old, respectively. Sequence analysis of the complete mitochondrial DNA in this pedigree revealed the presence of the known hypertension-associated ND1 T3308C mutation and 42 other variants, belonging to the Asian haplogroup D4h. The T3308C mutation resulted in the replacement of the first amino acid, translation-initiating methionine with a threonine in ND1. Furthermore, the ND3 T3308C mutation also locates in two nucleotides adjacent to the 3′ end of mitochondrial tRNALeu(UUR). Thus, this T3308C mutation caused an alteration on the processing of the H-strand polycistronic RNA precursors or the destabilization of ND1 mRNA. The occurrence of the T3308C mutation in these genetically unrelated pedigrees affected by diseases but absence of 242 Chinese controls as well as the mitochondrial dysfunctions detected in cells carrying this mutation indicate that this mutation is involved in the pathogenesis of hypertension. However, the mild biochemical defects, the lower penetrance of hypertension in this Chinese family and the presence of some control populations suggested the involvement of other modifier factors in the pathogenesis of hypertension associated with this ND1 T3308C mutation.  相似文献   

5.
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells, we showed ∼70% decrease in the steady-state level of tRNAHis in mutant cybrids, compared with control cybrids. The mutation changed the conformation of tRNAHis, as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. However, ∼60% increase in aminoacylated level of tRNAHis was observed in mutant cells. The failure in tRNAHis metabolism was responsible for the variable reductions in seven mtDNA-encoded polypeptides in mutant cells, ranging from 37 to 81%, with the average of ∼46% reduction, as compared with those of control cells. The impaired mitochondrial translation caused defects in respiratory capacity in mutant cells. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cells. The data provide the evidence for a mitochondrial tRNAHis mutation leading to deafness.  相似文献   

6.
Somatic mutations have been identified in mitochondrial DNA (mtDNA) of various human primary cancers. However, their roles in the pathophysiology of cancers are still unclear. In our previous study, high frequency of somatic mutations was found in the D-loop region of mtDNA of hepatocellular carcinomas (HCCs). In the present study, we examined 44 HCCs and corresponding non-cancerous liver tissues, and identified 13 somatic mutations in the coding region of mtDNAs from 11 HCC samples (11/44, 25%). Among the 13 mtDNA mutations, six mutations (T6787C, G7976A, A9263G, G9267A, A9545G and A11708G) were homoplasmic while seven mutations (956delC, T1659C, G3842A, G5650A, 11032delA, 12418insA and a 66 bp deletion) were heteroplasmic. Moreover, the G3842A transition created a premature stop codon and the 66 bp deletion could omit 22 amino acid residues in the NADH dehydrogenase (ND) subunit 1 (ND1) gene. The 11032delA and 12418insA could result in frame-shift mutation in the ND4 and ND5 genes, respectively. The T1659C transition in tRNAVal gene and G5650A in tRNAAla gene were reported to be clinically associated with some mitochondrial disorders. In addition, the T6787C (cytochrome c oxidase subunit I, COI), G7976A (COII), G9267A (COIII) and A11708G (ND4) mutations could result in amino acid substitutions in the highly conserved regions of the affected mitochondrial genes. These mtDNA mutations (10/13, 76.9%) have the potential to cause mitochondrial dysfunction in HCCs. Taken these results together, we suggest that there may be a higher frequency of mtDNA mutations in HCC than in normal liver tissues from the same individuals.  相似文献   

7.
Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis.  相似文献   

8.
We reported here the clinical and molecular characterization of a Chinese subject with childhood-onset hearing impairment. Clinical evaluations showed that the patient suffered from profound and non-syndromic sensorineural hearing loss with flat configurations. Sequence analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes led to the identification of double deafness-associated mutations of A1555G and T1095C in the 12S rRNA gene which apparently in the homoplasmic forms. In additional, there was no other functionally significant nucleotide variants found in this subject. As previous studies have indicated that the A1555G mutation was a primary contributing factor underlying the development of deafness but not sufficient to produce clinical phenotype, the co-segregation of two mitochondrial DNA mutations raises the possibility that the T to C transition at position 1095 plays a role in the phenotypic expression of deafness-associated A1555G mutation. Actually, the T1095C mutation disrupted an evolutionarily conserved base-pair at stem-loop of helix 25 of 12S rRNA, resulting in impaired translation in mitochondrial protein synthesis and a significant reduction of cytochrome c oxidase activity. As a result, it may enhance the biochemical defect in patient carrying the A1555G mutation, thus changing the age of onset and the severity of hearing impairment.  相似文献   

9.
10.
We report here the characterization of a Japanese family with maternally transmitted nonsyndromic hearing loss. Fourteen of 21 matrilineal relatives in this family exhibited early or late-onset/progressive but noncongenital hearing impairment with a wide range of severity, ranging from severe to normal hearing. The age-of-onset varies from 3 to 30 years. Sequence analysis of the complete mitochondrial genome in one matrilineal relative of this family revealed the presence of T7511C mutation and other variants. However, the levels of heteroplasmy of T7511C mutation did not correlate with the severity and age-of-onset of hearing loss in this family. Furthermore, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. The absence of the ND1 T3308C and tRNA(Ala) T5655C mutations in this Japanese family but the presence of these mtDNA mutations in an African family with a high penetrance seems to account for different penetrance between two pedigrees. Incomplete penetrance in this family indicates the involvement of modulatory factors in the phenotypic expression of hearing impairment associated with the T7511C mutation. Here, two known variants G79A and G109A in the GJB2 gene were identified in the hearing-impaired and normal hearing matrilineal relatives of this Japanese family. However, the lack of correlation in the severity and age-of-onset in hearing impairment with homozygous or heterozygous G79A or G109A or combination of both variants in the GJB2 gene in those subjects with hearing impairment and normal hearing indicates that those variants of GJB2 gene may not be a modifier of the phenotypic effects of the T7511C mutation in those subjects. Thus, the phenotypic variability in this family is due to the involvement of other modifier factor(s).  相似文献   

11.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

12.
Synaptosome cybrids were used to confirm the presence of heteroplasmic mtDNA sequence variants in the human brain. Synaptosomes contain one to several mitochondria, and when fused to mtDNA-deficient (ρ°) mouse or human cell lines result in viable cybrid cell lines. The brain origin of mouse synaptosome cybrid mtDNAs was confirmed using sequence polymorphisms in the mtDNA COIII, ND3 and tRNAArg genes. The brain origin of the human synaptosome cybrids was confirmed using a rare mtDNA MboI polymorphism. Fusion of synaptosomes from the brain of a 35-year-old woman resulted in 71 synaptosome cybrids. Sequencing the mtDNA control region of these cybrid clones revealed differences in the number of Cs in a poly C track between nucleotide pairs (nps) 301 and 309. Three percent of the cybrid clones had mtDNAs with 10 Cs, 76% had nine, 18% had eight and 3% had seven Cs. Comparable results were obtained by PCR amplification, cloning and sequencing of mtDNA control regions directly from the patient’s brain tissue, but not when the control region was amplified and cloned from a synaptosome cybrid homoplasmic for a mtDNA with nine Cs. Thus, we have clonally recovered mtDNA control region length variants from an adult human brain without recourse to PCR, and established the variant mtDNAs within living cultured cells. This confirms that some mtDNA heteroplasmy can exist in human neurons, and provides the opportunity to study its functional significance.  相似文献   

13.
Mitochondrial tRNA 3’-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3’-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber’s hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3’-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3’-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3’-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3’-end metabolism deficiency.  相似文献   

14.
Mitochondrial DNA (mtDNA) mutations play an important role in etiology of hereditary hearing loss. In various regions of the world, patients suffer from nonsyndromic sensorineural hearing loss initiated by aminoglycoside antibiotics. Mutations that had been shown as pathogenetically important for hearing function disturbance were identified in mitochondrial 12S rRNA and tRNA Ser(UCN) genes while pathogenic role of several mtDNA sequences requires additional studies. Here we examined various mutations and polymorphisms in mitochondrial 12S rRNA and tRNA Ser(UCN) genes in 410 patients with nonsyndromic sensorineural hearing loss from Volga-Ural, St. Petersburg, Yakutiya and Altai regions and in 520 individuals with normal hearing, which represented several ethnic groups (Russians, Tatars, Bashkirs, Yakuts, and Altaians) dwelling in Russian Federation. The A1555 (12S rRNA) mutation, which is important in disease pathogenesis, was detected in two families from Yakutiya and St. Petersburg with a hearing loss likely induced by aminoglycoside treatment as well as in a sample of Yakut population with a frequency of 0.83%. Further studies are required to reveal the importance of the detected 961 insC, 961 insC (n), 961 delTinsC (n), T 961 G, T 1095 C (12 S rRNA), as well as G7444A and G 7444 A, A 7445 C (tRNA Ser (UCN) ) mutations in the disturbance of hearing in patients. In addition, mitochondtrial DNA polymorphisms similar to those in European and Asian populations in spectrum and frequency, were revealed in the patients and the individuals from population samples.  相似文献   

15.
褶纹冠蚌线粒体基因组全序列分析   总被引:1,自引:0,他引:1  
蒋文枰  李家乐  郑润玲  汪桂玲 《遗传》2010,32(2):153-162
采用LA-PCR(Long amplification polymerase chain reaction )扩增方法首次获得褶纹冠蚌(Cristaria plicata)线粒体基因组全序列。分析表明:序列全长15 712 bp, 包括13个蛋白质基因、22个tRNA基因、2个rRNA基因和26个长度为2~328 bp的非编码区。A、T、C、G碱基组成分别为36.54%、27.22%、23.22%、13.02%。大部分基因在L链编码, 其中ND3~ND5、ND4L、COI~COIII、ATP6、ATP8、tRNAAsp和tRNAHis在H链编码。基因排列与同科的射线佩饰真珠蚌(Lampsilis ornata)一致, 与三角帆蚌(Hyriopsis cumingii)在COII和12S rRNA之间存在差异。13个蛋白质基因具有I(AUU、AUC)、V(GUG)、M (AUA、AUG)3种起始密码子, 除ND2终止密码子为不完整的T, 其余基因均为典型的UAA或UAG。22个tRNA中, 除tRNAThr、tRNALys、tRNASer(UCN)、tRNAAsp、tRNAArg、tRNATyr和tRNAMet之外, 其他15个tRNA都具有典型三叶草结构。与其他淡水双壳贝类一样, 褶纹冠蚌具有ATP8基因, 该基因可能与细胞质的渗透压平衡有关。  相似文献   

16.
Phenotypic diversity associated with pathogenic mutations of the human mitochondrial genome (mtDNA) has often been explained by unequal segregation of the mutated and wild-type genomes (heteroplasmy). However, this simple hypothesis cannot explain the tissue specificity of disorders caused by homoplasmic mtDNA mutations. We have previously associated a homoplasmic point mutation (1624C>T) in MTTV with a profound metabolic disorder that resulted in the neonatal deaths of numerous siblings. Affected tissues harboured a marked biochemical defect in components of the mitochondrial respiratory chain, presumably due to the extremely low (<1%) steady-state levels of mt-tRNAVal. In primary myoblasts and transmitochondrial cybrids established from the proband (index case) and offspring, the marked respiratory deficiency was lost and steady-state levels of the mutated mt-tRNAVal were greater than in the biopsy material, but were still an order of magnitude lower than in control myoblasts. We present evidence that the generalized decrease in steady-state mt-tRNAVal observed in the homoplasmic 1624C>T-cell lines is caused by a rapid degradation of the deacylated form of the abnormal mt-tRNAVal. By both establishing the identity of the human mitochondrial valyl-tRNA synthetase then inducing its overexpression in transmitochondrial cell lines, we have been able to partially restore steady-state levels of the mutated mt-tRNAVal, consistent with an increased stability of the charged mt-tRNA. These data indicate that variations in the levels of VARS2L between tissue types and patients could underlie the difference in clinical presentation between individuals homoplasmic for the 1624C>T mutation.  相似文献   

17.
We have identified a cluster of mitochondrial tRNALeu[UUR], mutations in a severe case of infantile myopathy. There were A to G transitions found at mtDNA positions 3259, 3261, 3266 and 3268. These point mutations change the anticodon arm and the anticodon UAA, normally found in tRNALeu[UUR], to UGA which is the one of the tRNAsSer[UCN]. This is the first anticodon alteration described in this tRNA. Another swap straight to the anticodon of tRNAPro alone was recently described in a less severe case [1]. Until now infantile myopathies have not been attributed to defined mtDNA alterations. This study reports for the first time mtDNA point mutations causing this early onset of a mitochondrial disorder. The apparent homoplasmy of these mutations and especially the location in the anticodon must be considered lethal, if the child would not have been respirated for 5 years from its birth. (Mol Cell Biochem 174: 231–236, 1997)  相似文献   

18.
Mutations in mitochondrial DNA have been associated with cardiovascular disease. We report here the clinical, genetic, and molecular characterization of one three-generation Han Chinese family with maternally transmitted hypertension. All matrilineal relatives in this family exhibited the variable degree of hypertension at the age at onset of 36 to 56 years old. Sequence analysis of the complete mitochondrial DNA in this pedigree revealed the presence of the known hypertension-associated tRNAIle A4295G mutation and 33 other variants, belonging to the Asian haplogroup D4j. The A4295G mutation, which is extraordinarily conserved from bacteria to human mitochondria, is located at immediately 3′ end to the anticodon, corresponding to conventional position 37 of tRNAIle. The occurrence of the A4295G mutation in several genetically unrelated pedigrees affected by cardiovascular disease but the absence of 242 Chinese controls strongly indicates that this mutation is involved in the pathogenesis of cardiovascular disease. Of other variants, the tRNAGlu A14693G and ND1 G11696A mutations were implicated to be associated with other mitochondrial disorders. The A14693G mutation, which is a highly conserved nucleoside at the TψC-loop of tRNAGlu, has been implicated to be important for tRNA structure and function. Furthermore, the ND4 G11696A mutation was associated with Leber’s hereditary optic neuropathy. Therefore, the combination of the A4295G mutation in the tRNAIle gene with the ND4 G11696A mutation and tRNAGlu A14693G mutation may contribute to the high penetrance of hypertension in this Chinese family.  相似文献   

19.
Zhao H  Young WY  Yan Q  Li R  Cao J  Wang Q  Li X  Peters JL  Han D  Guan MX 《Nucleic acids research》2005,33(3):1132-1139
In this study, we report the biochemical characterization of the deafness-associated mitochondrial 12S rRNA C1494T mutation using 27 cybrid cell lines constructed by transferring mitochondria from 9 lymphoblastoid cell lines derived from a Chinese family into human mitochondrial DNA (mtDNA)-less (ρ°) cells. Six cybrids derived from two asymptomatic members, and nine cybrids derived from three symptomatic members of the Chinese family carrying the C1494T mutation exhibited ~38 and 43% decrease in the rate of mitochondrial protein labeling, respectively, compared with twelve cybrids derived from four Chinese control individuals. These defects are apparently a primary contributor to significant reductions in the rate of overall respiratory capacity or the rate of malate/glutamate promoted respiration, or succinate/G3P-promoted respiration, or TMPD/ascorbate-promoted respiration in mutant cybrid cell lines derived from either symptomatic or asymptomatic individuals. Furthermore, the very significant/nearly identical increase in the ratio of doubling times in DMDM medium in the presence/absence of high concentration of paromomycin was observed in symptomatic or asymptomatic cybrid cell lines carrying the C1494T mutation as compared with the average rate in control cell lines. These observations provide the direct biochemical evidences that the C1494T mutation is a pathogenic mtDNA mutation associated with aminoglycoside-induced and non-syndromic hearing loss. In addition, these data provide the first biochemical evidence that nuclear background plays a critical role in the phenotypic manifestation of non-syndromic hearing loss and aminoglycoside toxicity associated with the C1494T mutation.  相似文献   

20.
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N?=?498, mean age 52 and N?=?1002, mean age 44) and one from a non-urban environment (N?=?501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号