首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An important approach to understanding RNA-based catalytic function by ribonuclease P is the investigation of its evolutionary diversity in structure and function. Because RNase P enzymes from all organisms are thought to share common ancestry, the fundamental features of structure and biochemistry should be conserved in all of its modern forms. In contrast to the bacterial enzyme, the RNase P enzymes fromEucarya, organelles, andArchaea are poorly understood. This review describes our nascent understanding of the structure and function of RNase P inArchaea, and how this enzyme compares to its homologs in the other evolutionary Domains.Abbreviations RNase P ribonuclease P - tRNA transfer RNA - pre-tRNA 5-unprocessed precursor transfer RNA - Archaea a.k.a. archaebacteria - Bacteria a.k.a. eubacteria - Eucarya a.k.a. eukaryotic nucleus/cytoplasm  相似文献   

2.
RNase P consists of both protein and RNA subunits in all organisms and organelles investigated so far, with the exception of chloroplasts and plant nuclei where no enzyme-associated RNA has been detected to date. Studies on substrate specificity revealed that cleavage by plant nuclear RNase P is critically dependent on a complete and intact structure of the substrate. No clearcut answer is yet possible regarding the order of processing events at the 5 or 3 end of tRNAs in the case of nuclear or chloroplast processing enzymes. RNase P from a phylogenetically ancient photosynthetic organelle will be discussed in greater detail: The enzyme from theCyanophora paradoxa cyanelle is the first RNase P from a photosynthetic organelle which has been shown to contain an essential RNA subunit. This RNA is strikingly similar to its counterpart from cyanobacteria, yet it lacks catalytic activity. Properties of the holoenzyme suggest an intermediate position in RNA enzyme evolution, with an eukaryotic-type, inactive RNA and a prokaryotic-type small protein subunit. The possible presence of an RNA component in RNase P from plant nuclei and modern chloroplasts will be discussed, including a critical evaluation of some criteria that have been frequently applied to elucidate the subunit composition of RNase P from different organisms.Abbreviations RNase P Ribonuclease P - (pre-)tRNA transfer ribonucleic acid (precursor) - tRNA Ser (- Tyr , - Phe ) transfer ribonucleic acid specific for serine (tyrosine, phenylalanine) - CyRP RNA RNA component of cyanelle RNase P  相似文献   

3.
A brief review of the genetic studies on ribonuclease P (RNase P) fromEscherichia coli is presented. Temperature-sensitive mutants ofE. coli defective in tRNA processing were isolated by screening cells which were unable to synthesize a suppressor tRNA at restrictive temperature. Structural analysis of accumulated tRNA precursors showed that the isolated mutants were defective in RNase P activity. Analyses of the mutants revealed that the enzyme is essential for the synthesis of all tRNA molecules in cells and that the enzymes consists of two subunits. Analyses of the isolated mutants revealed a possible domain structure of the RNA subunit of the enzyme.Abbreviations E. coli Escherichia coli - RNase P ribonuclease P  相似文献   

4.
RNase P recognizes many different precursor tRNAs as well as other substrates and cleaves all of them accurately at the expected position. RNase P recognizes the tRNA structure of the precursor tRNA by a set of interactions between the catalytic RNA subunit and the T- and acceptor-stems mainly, although residues in the 5-leader sequence as well as the 3-terminal CCA are important. These conclusions have been reached by several studies on mutant precursor tRNAs as well as cross-linking studies between RNase P RNA and precursor tRNAs. The protein subunit of RNase P seems also to affect the way that the substrate is recognized as well as the range of substrates that can be used by RNase P, although the protein does not seem to interact directly with the substrates. The interaction between the protein and RNA subunits of RNase P has been extensively studiedin vitro. The protein subunit sequence is not highly conserved among bacteria, however different proteins are functionally equivalent as heterologous reconstitution of the RNase P holoenzyme can be achieved in many cases.Abbreviations C5 protein protein subunit fromE. coli RNase P - EGS external guide sequence - M1 RNA RNA subunit formE. coli RNase P - ptRNA precursor tRNA - RNase P ribonuclease P  相似文献   

5.
RNase P, the enzyme responsible for 5-end processing of tRNAs and 4.5S RNA, has been extensively characterized fromE. coli. The RNA component ofE. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.  相似文献   

6.
Bacterial ribonuclease P RNA ribozyme can do the hyperprocessing reaction, the internal cleavage reaction of some floppy eukaryotic tRNAs. The hyperprocessing reaction can be used as a detection tool to examine the stability of the cloverleaf shape of tRNA. Until now, the hyperprocessing reaction has been observed in the heterologous combination of eukaryotic tRNAs and bacterial RNase P enzymes. In this paper, we examined the hyperprocessing reaction of Escherichia coli tRNAs by homologous E. coli RNase P, to find that these homologous tRNAs were resistant to the toxic hyperprocessing reaction. Our results display the evidence for molecular co-evolution between homologous tRNAs and RNase P in the bacterium E. coli.  相似文献   

7.
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA–RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.  相似文献   

8.
Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5 endonuclease, a 3 endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.Abbreviations pre-tRNA precursor to tRNA - pCp cytidine 5, 3-bisphosphate - IC50 inhibitor concentration giving 50% inhibition - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

9.
Ribonuclease (RNase) P is a site‐specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix‐loop‐helix protein‐binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 Å. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.  相似文献   

10.
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.  相似文献   

11.
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.  相似文献   

12.
Li D  Willkomm DK  Schön A  Hartmann RK 《Biochimie》2007,89(12):1528-1538
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.  相似文献   

13.
Ribonuclease P (RNase P) is a ribonucleoprotein responsible for the endonucleolytic cleavage of the 5-termini of tRNAs. Ribonuclease MRP (RNase MRP) is a ribonucleoprotein that has the ability to cleave both mitochondrial RNA primers presumed to be involved in mitochondrial DNA replication and rRNA precursors for the production of mature rRNAs. Several lines of evidence suggest that these two ribonucleoproteins are related to each other, both functionally and evolutionarily. Both of these enzymes have activity in the nucleus and mitochondria. Each cleave their RNA substrates in a divalent cation dependent manner to generate 5-phosphate and 3-OH termini. In addition, the RNA subunits of both complexes can be folded into a similar secondary structure. Each can be immunoprecipitated from mammalian cells with Th antibodies. In yeast, both have been found to share at least one common protein. This review will discuss some of the recent advances in our understanding of the structure, function and evolutionary relationship of these two enzymes in the yeast,Saccharomyces cerevisiae.Abbreviations LRI long range interaction - mt mitochondrial - MRP mitochondrial RNA processing - NME nuclear mitochondrial endonuclease - POP processing of precursor - RNase ribonuclease - SNM suppressor of NME - RNP ribonucleoprotein  相似文献   

14.
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.  相似文献   

15.
There are at least six small stable RNAs inMycoplasma capricolum cells besides tRNAs and rRNAs. One of them, MCS5 RNA, is a homolog of RNase P RNA. The predicted secondary structure of this RNA is essentially the same as that of other eubacterial RNase P RNAs. MCS5 RNA is more similar to the RNase P RNA ofB. subtilis than to that ofE. coli. This is consistent with previous conclusions that mycoplasmas are phylogenetically related to the low G+C Gram-positive bacterial group. The major substrates for MCS5 RNA must be the precursors of tRNAs. The precursor of MCS6 RNA, which is a homolog of theE. coli 10Sa RNA, may also be a substrate for the MCS5 RNA because this RNA has a tRNA-like structure at its 5 and 3 ends.  相似文献   

16.
Molecular investigations in mitochondria of higher plants have to take in account the complicated genomic structure of these organelles and their complex mode of gene expression. Recently tRNA processing activities and particulary RNase P-like activities have been described for mitochondria of mono- and dicot plants. The determined biochemical characteristics of these plant mitochondrial tRNA processing enzymes now allow a comparison to the bacterial prototype from which they evolved. The substrate specifity of the plant mitochondrial RNase P in particular has unique selection parameters distinct from theE. coli RNase P.  相似文献   

17.
Bacterial ribonuclease P RNA ribozyme can do the hyperprocessing reaction, the internal cleavage reaction of some floppy eukaryotic tRNAs. The hyperprocessing reaction can be used as a detection tool to examine the stability of the cloverleaf shape of tRNA. Until now, the hyperprocessing reaction has been observed in the heterologous combination of eukaryotic tRNAs and bacterial RNase P enzymes. In this paper, we examined the hyperprocessing reaction of Escherichia coli tRNAs by homologous E. coli RNase P, to find that these homologous tRNAs were resistant to the toxic hyperprocessing reaction. Our results display the evidence for molecular co-evolution between homologous tRNAs and RNase P in the bacterium E. coli.  相似文献   

18.
RNase P in both prokaryotes and eukaryotes is a ribonucleoprotein that cleaves tRNA precursors to generate the 5 termini of the mature tRNAs. Many patients with autoimmune diseases produce antibodies against a 40 kDa protein (designatedTo orTh antigen) which is an integral component of eukaryotic RNaseP as well as nucleolar 7-2 RNP which is identical to the mitochondrial RNA processing (MRP) RNP. Interestingly, theTo antigen found in human cells and the C5 protein, the only protein component ofE. coli RNaseP, are antigenically related. In this study, we show that a 56 nucleotide-long sequence, corresponding to nucleotides 20–75 near the 5 end of human RNaseP RNA, is sufficient to bind theTo antigen. We previously showed that the humanTo antigen binds to a short distinct structural domain near the 5 end of human 7-2/MRP RNA. There is no obvious primary sequence homology between theTo antigen binding sites in RNaseP RNA and 7-2/MRP RNA; however, these sequences are capable of assuming a similar secondary structure which corresponds to the recently proposed cage structure for RNaseP RNAs and 7-2/MRP RNA (Forster and Altman (1989) Cell 62: 407–409). These data are supportive of the idea that these two RNAs may have evolved from a common progenitor molecule.  相似文献   

19.
Summary Stability of RNA was tested in strains of Escherichia, coli carrying single, double, or triple mutations in the RNA processing enzymes RNase III, RNase E and RNase P. Tests were carried out for total pulse labeled RNA, -galactosidase mRNA and for the decay of preexisting RNA during carbon starvation. Decay of RNA was measured at premissive and nonpermissive temperatures and in no case were significant differences between mutants and non-mutant strains found. Therefore, we conclude that the three processing enzymes; RNase III, E and P do not contribute significantly to turnover of RNA in Escherichia coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号